Executive Summary

Section 01. Overview and Vision
Planning Study Synergies 11
Goals of Study 14
Guiding Principles 16
Process and Timeline 17

Section 02. Program Analysis
Space Assessment 21
Space Standards 23
Space Inventory 26
Total Space Need 42
Parking Need 45

Section 03. Existing Conditions
MyCampus Online Survey 48
Site Capacity 51
Landscape 52
Utility Infrastructure 62
Transportation 64
Building Condition Assessment 70

Section 04. Developing the Plan
Goals 79
Framework 84
Development Potential 87
Strategies 88

Section 05. Recommended Plan
Recommended Plan 92
Strategies 100
Sustainability 130
Infrastructure 135

Section 06. South Campus Functions: Phasing and Implementation
Near Term 160

Section 07. UW Medical Center: Phasing and Implementation
Near Term 180

APPENDIX VOLUME ONE
Appendix A. Meeting Minutes
Appendix B. Selected Survey Responses
Appendix C. Existing Space Inventory
Appendix D. Existing Conditions
Appendix E. School of Medicine

APPENDIX VOLUME TWO
Appendix E. Recommended Plan Utilities
Appendix F. UW Medical Center Analysis
Appendix G. Cost Estimation Report

Appendix H. Existing Conditions Analysis
Utilities
Landscape
Appendix J. Space Needs
Appendix K. Design Alternatives

Sections
Photo Credit: Buchanan, Andrew/ SLP. Aerial view of UW Medical Center and Health Sciences Building. 2012. NEWSBEAT UW HEALTH SCIENCES. JPEG. 1/20/2016

UW South Campus Study
STAKEHOLDERS

Office of the University Architect / Office of Planning and Management
School of Public Health
Health Sciences Administration
School of Dentistry
School of Nursing
School of Pharmacy
School of Medicine
UW Medical Center
School of Social Work
Applied Physics Lab
Center on Human Development and Disability (CHDD)
College of Arts and Sciences
College of the Environment
College of Engineering
Classroom Support Services
Transportation Services
Housing and Food Services
Facilities Maintenance & Construction
Campus Engineering
Facilities and Data Centers
Facility Services: Health Sciences Zone
Capitol Projects Office
Environmental Health and Safety

OTHER UNIVERSITY PARTICIPANTS

Niradha Lediych
Assistant Dean
School of Pharmacy
Dawn Lehman
Associate Dean
College of Engineering
Heike Stevescu
Senior Associate Administrator
UW Medical Center
Jean Gerber
Assistant Dean
School of Dentistry
Kareen Walters
Associate Dean
School of Social Work
Mary Ann Novich
Chief of Staff
School of UW Medicine
Michelle Griffis
Director of Finance & Administration
School of Nursing
Stephanie Harrington
Associate Dean
College of the Engineering
Stephanie Moyes
Associate Dean
College of Arts and Sciences

CONSULTANT TEAM

PERKINS+WILL

Brodie Bain
Principal-in-Charge
Campus Planning Director
Erik Wott
Design Principal
Jaclyn Treat
Planner
Janice Young
Staff
Michael Bryant
Architectural Designer

ROEN ASSOCIATES

Roger Roen
Cost Estimator
Principal
David Mendez
Cost Estimator
Matt Wiggins
Cost Estimator
KFFF

Marty Chase
Civil Engineer
Principal
Ann Gramstad
Civil Engineer
EXECUTIVE SUMMARY

The South Campus of the University of Washington houses the University Health Sciences, Environmental Sciences, UW Medical Center, and a number of other functions. The boundaries of the South Campus area significantly limit the ability to expand. Building on a preceding study (Phase I), which examined the redevelopment potential of South Campus but without a detailed investigation of each of the unit’s program needs, this study, “Phase II”, provides the University of Washington with a fact-based understanding of the dynamic planning and programming needs, opportunities and strategies for the South Campus area. This includes the Health Science Schools (HSS) of Dentistry, Nursing, Medicine, Public Health, Pharmacy, and the Health Sciences Administration as well as the Colleges of Engineering, the Environment, and Arts and Sciences. Funded by the School of Public Health (SPH) and the Office of Planning and Budgeting, the result is a roadmap defining a phased, flexible and strategic vision for growth and expansion south of NE Pacific Street for the next 30+ years. This document outlines the space needs of associated units and development potential within the South Campus. Input was collected from a variety of University stakeholders, including a Core Group, the South Campus Study Advisory Committee, Infrastructure Services, and academic units currently located in the South Campus area. Three realistic scenarios were studied, recognizing constraints on the availability of land, built space, and financial resources in relation to accommodating programmatic growth needs and meeting other campus goals. Development principles include significantly improving this very challenged part of the university campus (in terms of function, sense of place, identity and aesthetics) with a much-improved built character, connected and memorable open spaces, and increase in and improvements to landscape features, more functional circulation and supported infrastructure. The final recommended plan is a hybrid of the best aspects from each alternative scenario, and was studied in detail with phasing possibilities and cost estimates for potential early phases, and is described in Section 5 and Section 6.
“Interdisciplinary projects that benefit multiple schools are the most likely to be supported and funded...Leverage all resources across the schools to get the greatest return on investment.”

BUILDING ADVISORY COMMITTEE
One of many questions posed during the November 11th, 2014 Advisory Committee kick-off meeting. The Core and Advisory Groups began to clarify goals and objectives by developing a set of guidelines and principles for the realistic and flexible strategies of South Campus, supporting both the Health Sciences and campus planning goals and vision.

The meeting included a brief review of the history of South Campus development, describing the ad hoc and relatively unplanned nature of the existing precinct. Existing conditions of South Campus are explored in further detail in Section 3.

PLANNING STUDY SYNERGIES

Charged with aligning recently completed, current and ongoing planning studies, the Core Group drew key conclusions from the following relevant planning design and construction efforts:

Montlake Triangle / Rainier Vista

A major intersection for pedestrian, bicycle, vehicle, bus and light rail modes, this historic vista is a hub of activity. A gateway to the campus, the University of Washington Medical Center (UWMC) entrance is a prominent anchor on the eastern edge of South Campus. This project is currently under construction, and expected to be completed in 2016.

Sound Transit Link Light Rail Station

With service set to begin in 2016, projected ridership at the new University of Washington Station, shown above in Figure 04, is expected to hit 25,000 daily riders by 2030.1

Burke-Gilman Trail

Construction projects to improve the Burke-Gilman Trail and surrounding areas are underway for the Montlake Triangle, Rainier Vista, West Campus connections, and the new Sound Transit Link light rail station. "Real users of all types will reap the benefits of a first-class multimodal transportation corridor."2 An increase in traffic is expected for the corridor running east/west along the north edge of South Campus.

Portage Bay Vista / ARCF

Integrating landscape and research facilities with the historic vista on the west edge of South Campus, this project maintains the only existing vista through South Campus to Portage Bay.3

Portage Bay Vista / ARCF

Portage Bay Vista / ARCF

Design is underway for the west CUP in West Campus. It is planned to accommodate increased density in West Campus, as well as auxiliary power to South Campus.

West Central Utility Plant (CUP)

All tenants of the Bryant Building property are to be relocated prior to its demolition. The new UW Police Department Facility will be adjacent to the west CUP. Completion is scheduled for summer 2016.4

West Campus Housing Projects

Recent mixed-use development projects have increased student housing density in West Campus including Alder, Lander Hall, Poplar, Elm, Terry and Maple Halls. A number of these include recreation, meeting, restaurant and market space.
UW South Campus Study

SECTION 01. OVERVIEW AND VISION

UWMC / SoM Entry Study

This project includes a conceptual plan for new paths and a preliminary estimate of potential costs to mitigate tree removal from the medical center entrance.¹

Husky Stadium

Completion of the renovation of Husky Stadium in 2013 included construction of a two hundred-stall parking garage below the south bowl and stands.²

2003 UW Campus Master Plan (CMP)

Goals of the Campus Master Plan have been integrated into the goals of this study. The plan is currently undergoing an update.³

U District Partnership

This 501(c)3 corporation embodies community engagement and collaboration opportunities for a range of U District stakeholders, including public, private, and community partners.⁴

Learning Space Assessment Study

Existing campus general-use classrooms were studied and found to meet the instructional needs of the university, with adequate space and level geographic distribution. For scheduling efficiency, a campus-wide class block standard and an increase in passing time from 10 to 15 minutes was recommended.⁵

West Campus Development Framework Plan

This plan is a shared vision for the future of this area of campus, as it is increasingly subject to change and growth. Partnerships with city, community and university stakeholders were developed to facilitate the infrastructure required to sustain the area’s growth and development.⁶

North Campus Housing

Multiple studies have recently informed opportunities for renovation and redesign of North Campus. A review of programmatic needs resulted from demonstrated success of West Campus development.

Active Learning Classrooms (ALC) / Inter-Professional Education (IPE) Studies

A pre-design report proposed active learning classrooms (ALC) for use by Health Sciences schools. Potential locations were identified in the South Campus Center building.

UW Campus Landscape Framework

For the South Campus area, the Montlake Cut Connection was identified as an Essential Priority Project. Additional recommendations include providing more open space for socializing and relaxing with access to the waterfront.⁷

2015 MyPlaces Online Survey⁶

Leveraging data collected from the 2013 MyPlaces Survey from the Office of Planning and Budgeting (OPB), the Core Team conducted a similar survey to understand daily activity and use patterns within the South Campus.

School of Medicine Phase 3.2 (South Lake Union)

This multi-phase project was developed to facilitate the School of Medicine’s goals of fostering communication, interaction and education. Phase 3.2 is one of two remaining buildings in the master plan to complete the School’s vision as a “top notch” research complex. The complex has expanded the School's physical presence to the South Lake Union neighborhood of Seattle.

¹ http://udistrictpartnership.org/
² 2014 West Campus Development Framework Study; Mahlum Architects.
⁴ August 1, 2014; Campus Landscape Framework; Michael Van Valkenburgh Associates.
⁵ http://depts.washington.edu/myplaces/experiments/results_public.php
⁶ Image Courtesy of Mahlum Architects.
⁷ http://depts.washington.edu/myplaces/experiments/results_public.php
2003 Master Plan Goals
Goals of the master plan are to: respect the status of the campus as a national resource, ensure good stewardship of the existing campus, maintaining and protecting the values, provide for facility and infrastructure needs of the next decade, maintain flexibility to best accommodate future growth and take advantage of unforeseen opportunities; enhance the campus as a whole and specific areas; provide accessibility to and within the campus; promote safety; and design of circulation elements, buildings, and open spaces; respect the environment, promote conservation of natural resources and goals of Growth Management Act and Shoreline Management Act; respect the status and the scholarship of its faculty. It is the University’s mission to disseminate knowledge through the exchange of facts, theories, and research that ensure the production of new knowledge and research institutions, the University is committed to maintaining an environment for objectivity and the free exchange of facts, theories, and ideas.5

2003 South Campus Goals
Specific objectives identified for the South Campus are to: take advantage of the shoreline and views to the water; improve access to the Sound Transit station; improve pedestrian routes along the water; provide better connection between the South and Central Campuses over NE Pacific; protect the vistas from Raviv Vista; create additional open spaces; accommodate pedestrian access through the Medical Center and Health Sciences campus to the water when consistent with security and safety of patients, students, faculty and staff.6

5. What is the greatest challenge to this planning effort?
• Funding and implementation; the University is committed to remaining operational and education without interruption.
• Surge and phasing; projects are implemented as funding is provided.
• Interdisciplinary projects, need greater connectivity across Pacific Ave.
• Travel time between locations on and off campus, need greater connectivity.
• Interior and exterior circulation.

6. How do we overcome this challenge?
• Prioritize improvements as funding is provided.
• Leverage all resources across the schools to get the greatest return on investments.

7. What are the challenges to this planning effort?
• Accessibility.
• Parking capacity, access and wayfinding for all, especially patients and communities.
• Medical education classroom space availability and quality.
• Surge and phasing as projects are implemented.

8. What is the greatest challenge to this planning effort?
• Filling and implementation; the time line for improvements feels too far away and long-term costs are affecting recruitment for students and faculty.
• Surge and phasing of improvements feels too far away and long-term costs are affecting recruitment for students and faculty.

9. What should be accomplished with this plan?
• The ability to support interdisciplinary programs across campus, both teaching and research, university-wide with connectivity across Pacific Ave.
• Greater opportunities for inter-professional education.
• Provide a variety of collaborative spaces for students, researchers and staff. Provide a greater quantity of collaborative, interdisciplinary research space.
• Accommodate new technologies within inter-professional for all spaces.
• Program calculations are an important focus. Reduce the number of programs at satellite locations to improve collaboration.
• Leverage all resources across the schools to get the greatest return on investments.

1. What should be accomplished with this plan?
• The ability to support interdisciplinary programs across campus, both teaching and research, university-wide with connectivity across Pacific Ave.
• Greater opportunities for inter-professional education.
• Provide a variety of collaborative spaces for students, researchers and staff.
• Provide a greater quantity of collaborative, interdisciplinary research space.
• Accommodate new technologies within inter-professional for all spaces.
• Program calculations are an important focus. Reduce the number of programs at satellite locations, to improve collaboration.
• Leverage all resources across the schools to get the greatest return on investments.

2. What are the challenges to this planning effort?
• Accessibility.
• Parking capacity, access and wayfinding for all, especially patients and communities.
• Medical education classroom space availability and quality.
• Surge and phasing.

3. How could this study be successful?
• Prioritize improvements as funding is provided.
• Interdisciplinary projects that benefit multiple schools are the most likely to be supported and funded.

4. What is the greatest challenge to this planning effort?
• Filling and implementation; the time line for improvements feels too far away and long-term costs are affecting recruitment for students and faculty.
• Surge and phasing of improvements feels too far away and long-term costs are affecting recruitment for students and faculty.
We envision a great setting that provides world-class resources to advance the Educational, Research, Service (including clinical) missions of all by facilitating and supporting the following guiding principles in the environmentally sustainable development of the physical and landscape space of the South Campus.

GUIDING PRINCIPLES

1. **IMPROVE CONNECTIVITY** to foster **COLLABORATION** and support **DIVERSITY**
 - Create innovative, collaborative and interactive spaces for students, faculty, industry, regional and global partnerships
 - Provide viable density for growth and contiguity to allow for maximizing open space and access to natural daylight
 - Support accessibility through a combination of multi-modal transportation and linkages to off-site collaborators (HV, SLU, Fed agencies)

2. **CREATE A SENSE OF PLACE** and **PROMOTE PERSONAL WELL-BEING**
 - Enrich campus & student life through the creation of respectful learning environments
 - Bringing together unique and diverse cultural perspectives strengthens different ideas, creativity and discovery
 - Provide for flexibility by breaking down physical and perceived barriers

3. **Strategically BALANCE EXISTING AND FUTURE RESOURCES**
 - Maximize the use of the resources such as land, waterfront and open space through environmental and fiscally sustainable infrastructure
 - Plan for density of facilities adequate to achieve the mission of the Guiding Principles and the goals and activities of all stakeholders within and surrounding South Campus

Emphasize **DIVERSITY**
- Enrich campus & student life through the creation of respectful learning environments
- Bringing together unique and diverse cultural perspectives strengthens different ideas, creativity and discovery
- Provide for flexibility by breaking down physical and perceived barriers

Establish **SENSE OF PLACE**
- Create an interior sense of place to help identify individual schools and departments and outside through landscape, open space and reinvigoration of the waterfront
- Develop an environment with inviting uses and encouraging an increased sense of community through shared use for all stakeholders
- Reimagine South Campus as a destination through enhanced artistic & cultural experience

PROCESS

1. **NOV. 2, 2014/ ADVISORY KICK OFF MEETING**
2. **DEC. 12, 2014/ CORE GROUP MEETING**
3. **JAN. 15, 2015/ PRELIMINARY SCENARIO DEVELOPMENT WORKSHOP**
SECTION 02.
PROGRAM ANALYSIS
INTRODUCTION AND OVERVIEW

This section details the process and outcomes for a high-level analysis of functional conditions and space needs, as well as a space inventory of existing buildings in South Campus. To develop a program for each major functional unit, the current programmatic space requirements and projected growth for the next 20 years were established. Facilities housing each unit were toured to identify major issues such as functional or space constraints, and underperforming spaces that might offer opportunities for higher-productivity uses or improved collaboration.

Preliminary interviews were conducted with the following groups:
- Health Sciences Administration
- School of Pharmacy
- School of Nursing
- School of Dentistry
- Health Sciences Library
- Applied Physics Lab
- School of Social Work
- School of Medicine
- College of Arts and Sciences
- College of Engineering
- College of the Environment
- Center on Human Development and Disability

Spaces within a total of 22 buildings assigned to Health Sciences Administration and Schools of Pharmacy, Nursing, Dentistry were inventoried and verified by both Perkins + Will (P+W) and representatives from each unit. Analysis of the Schools of Medicine and Public Health were developed separately, but integrated into the conceptual scenarios.

The units studied currently occupy 2,712,000 assignable square feet (asf) with a range of functions including research labs, out-patient clinics, classrooms, office space, dock loading/storage, student work space, dining services, etc. Unit Layout by Building and a Unit Layout Site Plan are located in Appendix C. All South Campus buildings occupied by the units investigated have been documented using this format.
METHODS AND PROCESS

The following describes the methods and process used by P+W.

The space needs described herein were developed under the guidance of the Core Group, which was comprised of representatives from Health Sciences Administration, Office of Planning and Budgeting (OPB), School of Public Health, and School of Medicine, with input by unit representatives. Unit meetings were conducted with each group. Reviews of the preliminary inventory analysis were included in the meeting discussions.

The following paragraphs summarize the methods used to assess the current and future space needs of South Campus.

P+W and OPB met with the leadership of each unit to develop an understanding of their mission, goals, functions and vision for the next 20 years, as well as the adequacy of their existing space. Discussions about the effectiveness of current space focused on an overall quality, quantity and preferred adjacencies.

Future space needs related to any expected changes in enrollment, research or other operations were also noted. Investigators (PI), lab researcher counts, and post-doc counts were also included. (It should be noted that these standards have not been officially adopted by the University. It should be noted that classrooms managed by the University’s Classroom Services were not inventoried in this study.)

Space Needs Analysis

Space Needs were developed based on unit input and the use of space standards. See page 44 for the breakdown by unit. Appendix C contains a detailed analysis of the revised SIMS data for each group. The descriptions in this section represent needs outlined by each of the units and the results of interim discussions with the space study Core Group.

DEVIATION FROM STANDARDS

Any perceived deviations from the standards shown in Table 01 were highlighted in the updated SIMS data. This process ensures consistency across all units in terms of assessing their high-level space needs. It should be noted that it is not realistic to assume every space (or even the majority of spaces) could or would be “corrected,” as a result of this high-level study. The deviations often result from existing building configurations or other factors. As specific relocations and/or projects move forward, a more detailed programming process will be required.

Appendix C contains Space Comparison examples that describe below or above the standards. This is not to highlight specific spaces, but to illustrate the types of deviations that occur.

SPACE STANDARDS

<table>
<thead>
<tr>
<th>Space Type</th>
<th>Range</th>
<th>Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>110</td>
<td>GENERAL CLASSROOM</td>
<td>21-60 seats</td>
</tr>
<tr>
<td>112</td>
<td>LAB CLASSROOM</td>
<td>21-60 seats</td>
</tr>
<tr>
<td>114</td>
<td>Small Classroom</td>
<td>1-20 seats</td>
</tr>
<tr>
<td>115</td>
<td>COMPUTER CLASSROOM</td>
<td>1-20 seats</td>
</tr>
<tr>
<td>116</td>
<td>LAB CLASSROOM</td>
<td>30-60 seats</td>
</tr>
<tr>
<td>117</td>
<td>COMPUTER LABORATORY</td>
<td>30-60 seats</td>
</tr>
<tr>
<td>250</td>
<td>RESEARCH LAB</td>
<td>8 seats</td>
</tr>
<tr>
<td>230</td>
<td>COMPUTER LAB</td>
<td>30-60 seats</td>
</tr>
<tr>
<td>235</td>
<td>BREAK AREA</td>
<td>3-12 seats</td>
</tr>
<tr>
<td>240</td>
<td>LIBRARY STUDY ROOM</td>
<td>1-6 seats</td>
</tr>
<tr>
<td>241</td>
<td>NON-LIBRARY STUDY RM</td>
<td>1-6 seats</td>
</tr>
<tr>
<td>260</td>
<td>LIBRARY</td>
<td>1-6 seats</td>
</tr>
<tr>
<td>280</td>
<td>STUDENT CARRELS</td>
<td>8 seats</td>
</tr>
<tr>
<td>285</td>
<td>CLASSROOM</td>
<td>30-60 seats</td>
</tr>
<tr>
<td>300</td>
<td>CONFERENCE ROOM</td>
<td>8 seats</td>
</tr>
<tr>
<td>301</td>
<td>TREATMENT/EXAM</td>
<td>8 seats</td>
</tr>
<tr>
<td>302</td>
<td>OTHER (NON-LIBRARY/CLASSROOM)</td>
<td>8 seats</td>
</tr>
<tr>
<td>303</td>
<td>TREATMENT/EXAM</td>
<td>8 seats</td>
</tr>
<tr>
<td>304</td>
<td>TREATMENT/EXAM</td>
<td>8 seats</td>
</tr>
<tr>
<td>305</td>
<td>Treatment/Exam</td>
<td>8 seats</td>
</tr>
<tr>
<td>306</td>
<td>TREATMENT/EXAM</td>
<td>8 seats</td>
</tr>
<tr>
<td>307</td>
<td>TREATMENT/EXAM</td>
<td>8 seats</td>
</tr>
<tr>
<td>308</td>
<td>TREATMENT/EXAM</td>
<td>8 seats</td>
</tr>
<tr>
<td>309</td>
<td>TREATMENT/EXAM</td>
<td>8 seats</td>
</tr>
<tr>
<td>310</td>
<td>TREATMENT/EXAM</td>
<td>8 seats</td>
</tr>
<tr>
<td>311</td>
<td>TREATMENT/EXAM</td>
<td>8 seats</td>
</tr>
<tr>
<td>312</td>
<td>TREATMENT/EXAM</td>
<td>8 seats</td>
</tr>
<tr>
<td>313</td>
<td>TREATMENT/EXAM</td>
<td>8 seats</td>
</tr>
<tr>
<td>314</td>
<td>TREATMENT/EXAM</td>
<td>8 seats</td>
</tr>
<tr>
<td>315</td>
<td>TREATMENT/EXAM</td>
<td>8 seats</td>
</tr>
<tr>
<td>316</td>
<td>TREATMENT/EXAM</td>
<td>8 seats</td>
</tr>
<tr>
<td>317</td>
<td>TREATMENT/EXAM</td>
<td>8 seats</td>
</tr>
<tr>
<td>318</td>
<td>TREATMENT/EXAM</td>
<td>8 seats</td>
</tr>
<tr>
<td>319</td>
<td>TREATMENT/EXAM</td>
<td>8 seats</td>
</tr>
<tr>
<td>320</td>
<td>TREATMENT/EXAM</td>
<td>8 seats</td>
</tr>
<tr>
<td>321</td>
<td>TREATMENT/EXAM</td>
<td>8 seats</td>
</tr>
<tr>
<td>322</td>
<td>TREATMENT/EXAM</td>
<td>8 seats</td>
</tr>
<tr>
<td>323</td>
<td>TREATMENT/EXAM</td>
<td>8 seats</td>
</tr>
<tr>
<td>324</td>
<td>TREATMENT/EXAM</td>
<td>8 seats</td>
</tr>
<tr>
<td>325</td>
<td>TREATMENT/EXAM</td>
<td>8 seats</td>
</tr>
<tr>
<td>326</td>
<td>TREATMENT/EXAM</td>
<td>8 seats</td>
</tr>
<tr>
<td>327</td>
<td>TREATMENT/EXAM</td>
<td>8 seats</td>
</tr>
<tr>
<td>328</td>
<td>TREATMENT/EXAM</td>
<td>8 seats</td>
</tr>
<tr>
<td>329</td>
<td>TREATMENT/EXAM</td>
<td>8 seats</td>
</tr>
<tr>
<td>330</td>
<td>TREATMENT/EXAM</td>
<td>8 seats</td>
</tr>
<tr>
<td>331</td>
<td>TREATMENT/EXAM</td>
<td>8 seats</td>
</tr>
<tr>
<td>332</td>
<td>TREATMENT/EXAM</td>
<td>8 seats</td>
</tr>
<tr>
<td>333</td>
<td>TREATMENT/EXAM</td>
<td>8 seats</td>
</tr>
<tr>
<td>334</td>
<td>TREATMENT/EXAM</td>
<td>8 seats</td>
</tr>
<tr>
<td>335</td>
<td>TREATMENT/EXAM</td>
<td>8 seats</td>
</tr>
</tbody>
</table>
GROSS-TO-NET CALCULATIONS
For planning purposes, the space needs assessment is typically performed using assignable square feet (ASF). This is equivalent to another common label “departmental gross square feet”, (DGSF) and allows for planning at the unit level. Once ASF is determined, gross square feet (GSF) must be calculated in order to develop a site-level plan.

ASF
Assignable Square Feet (ASF): all space that can be “assigned” to a specific unit. This includes a tally of every individual space as well as internal (non-building-wide) circulation required to connect spaces (office suite circulation for example).

GSF
Gross Square Feet (GSF): “unassignable” space that supports the entire building such as extra space, public corridors allowing access to departments, exit stairs, elevators, structure, or mechanical shafts, etc. A multiplier is applied to ASF to determine the amount of GSF required.

GSF Multiplier
A 54% multiplier (i.e. the building is 55% efficient) was used to translate non-Medical Center ASF to GSF. A 80% factor (i.e. 1.25 multiplier) was used for the UWMC hospital campus since much of the mechanical requirements are supplied from a central utility plant and the ASF incorporates significant amount of departmental circulation.

BUILDING FOOTPRINTS AND LAYOUT STANDARDS
Future buildings within South Campus will accommodate a variety of uses including teaching, clinical, administrative and research labs. Lab space is the most restrictive, with a standard dimension of 110'-120' in overall building width. For planning purposes, as each scenario was developed, a building width of 120'-0" was applied to the majority of building footprints in order to accommodate any combination of functions.
SUMMARY OF FUNCTION AND SPACE NEEDS ANALYSIS

- Proximity to Health Sciences is paramount. Would like to have a combination of home base and collaboration space.
- Proximity to Health Sciences is key. Need both dry and wet labs. Do need to expand space needs. No flexibility of space.
- There’s no parking or access for them. Have to have ability to share labs. Shared collaborations with Radiology and Bioengineering.
- Shared collaborations with Radiology and Bioengineering. There’s no parking or access for them. Have to have ability to share labs. Shared collaborations with Radiology and Bioengineering.
- Close proximity to each other and main campus; they focus on undergraduate interdisciplinary collaborations.
- Close proximity to each other and main campus; they focus on undergraduate interdisciplinary collaborations.
- Biology must be directly adjacent to Risk Hall and LSB.
- Biology and Psychology have critical adjacency needs to each other and main campus. They focus on undergraduate interdisciplinary collaborations.
- Convenient adjacency to Health Sciences for:
 - Chemistry
 - Physics
 - Biology
 - Psychology
 - Statistics
 - Algebraic Mathematics
 - Social Sciences
 - College of Engineering
- I-Labs is standalone and could be relocated to South Campus. LSB will act as an interaction hub with several amenities for undergraduate.
- Life Sciences Building (LSB) is currently in design phase. Life Sciences Building (LSB) is currently in design phase.
- Life Sciences Building (LSB) is currently in design phase. Life Sciences Building (LSB) is currently in design phase.
- Life Sciences Building (LSB) is currently in design phase. Life Sciences Building (LSB) is currently in design phase. LSB will act as an interaction hub with several amenities for undergraduates.
- Biology is the highest priority program at UW and is growing; teaching labs are the greatest need.
- Life Sciences Building (LSB) is currently in design phase. Life Sciences Building (LSB) is currently in design phase. LSB will act as an interaction hub with several amenities for undergraduates.
- Biology is the highest priority program at UW and is growing; teaching labs are the greatest need.
- Life Sciences Building (LSB) is currently in design phase. Life Sciences Building (LSB) is currently in design phase. LSB will act as an interaction hub with several amenities for undergraduates.
- Biology is the highest priority program at UW and is growing; teaching labs are the greatest need. Life Sciences Building (LSB) is currently in design phase. LSB will act as an interaction hub with several amenities for undergraduates.
- Biology is the highest priority program at UW and is growing; teaching labs are the greatest need. Life Sciences Building (LSB) is currently in design phase. LSB will act as an interaction hub with several amenities for undergraduates.
SECTION 02. PROGRAM ANALYSIS

CENTER ON HUMAN DEVELOPMENT AND DISABILITY (CHDD) | HEALTH SCIENCE ADMINISTRATION

CHDD is one of the nation’s largest and most comprehensive interdisciplinary research and training centers focusing on a wide array of developmental disabilities. More than 600 University of Washington faculty and staff members, as well as numerous doctoral and post-doctoral students, provide clinical services, interdisciplinary clinical and research training, and technical assistance and outreach training to community practitioners and community agencies. CHDD scientists and clinicians also conduct basic and applied research to generate new knowledge and disseminate information widely.

CURRENT LOCATIONS

- Health Sciences Building (HSB)
- Center on Human Development and Disability South (CHSB)
- Center on Human Development and Disability Clinic (CHCL)
- School of Nursing
- School of Medicine
- Magnuson Health Sciences Center (HSC)
- Health Sciences Building (HSB)

SUMMARY OF FUNCTION AND SPACE NEEDS

- SUMMARY OF FUNCTION AND SPACE NEEDS
 - Thoroughly interdisciplinary space (more than 45 faculty associated with CHDD have primary appointments elsewhere on campus).
 - CRITICAL ADJACENCIES
 - Pediatrics and community agencies.
 - CHDD scientists and clinicians also conduct basic and applied research to generate new knowledge and disseminate information widely.

ADJACENCIES

- Priority to Health Sciences and UWM are great strengths of the program.
- Priority to brain imaging, genetics, animal behavior, behavioral evaluation center is beneficial.
- Audiology is directly connected to neurocounseling center.
- CHDD campus includes 2 buildings on SC and 2 buildings on South Campus include the South, School of Nursing, and Fanning buildings.
- South campus is a heterogeneous group with Nursing and other disciplines.
- Patient access is very important. Collaborations with UW, Seattle School District and Community agencies.
- Any other location on campus would be detrimental, as it depends on sharing amenities with SoM, if another Public Health (toxicology) could collaborate.
- Patient access is very important. Collaborations with UW, Seattle School District and Community agencies.
- Comprehensive program to increase Doctor of Dental Surgery (DDS) enrollment by 47% to be fiscally sound, increasing clinical experience. Scheduling to be done.
- Minimal research, but trying to grow, this is a priority.
- Thoroughly interdisciplinary space (more than 45 faculty associated with CHDD have primary appointments elsewhere on campus).
- Current Assigned Space in South Campus
 - UW SIMS Database: 34,796 ASF
 - Current Assigned Space in South Campus from UW SIMS Database: 108,156 ASF

SCHOOL OF DENTISTRY

- The primary mission, through educational, research, and service programs, is to prepare students to become competent oral health care professionals. The primary mission, through educational, research, and service programs, is to prepare students to become competent oral health care professionals.
- Current space needs are not large enough. Dental Stores space is not large enough.
- Current Available space is in South campus.
- Current space needs are not large enough. Dental Stores space is not large enough.
- Current space needs are not large enough. Dental Stores space is not large enough.
- Current space needs are not large enough. Dental Stores space is not large enough.
- Current space needs are not large enough. Dental Stores space is not large enough.
SECTION 02. PROGRAM ANALYSIS

COLLEGE OF ENGINEERING (COE)
College of Engineering is a diverse community of innovators working to dramatically improve the quality of life in the state, the nation, and the world. They do this by leading in engineering discovery, innovation, education, and engagement.

The UW is an economic powerhouse in the state, directly and indirectly affecting every resident of Washington. The College of Engineering accounts for 5% of UW’s overall impact-generating revenue, jobs and spending.1

CURRENT LOCATIONS
Foege Building
Harris Hydraulics

SUMMARY OF FUNCTION AND SPACE NEEDS
• Not a large population of Engineering students use the South Campus.
• Foege, Benson Hall and Harris Hydraulics Laboratory have Engineering space. Of that, 50% is in a mix of teaching space with lab classrooms and general classrooms.
• Harris Hydraulics Laboratory is an important resource for the university with its equipment.
• Embarking on a partnership with School of Medicine for a Gait Lab that will study human body movements quantitatively, planned for Wallace Hall.
• Most events are held on the weekends, avoiding issues with parking.

ADJACENCIES
• Harris Hydraulics functions are not dependent on proximity to the water’s edge, but would be expensive to move equipment.
• New residences in West Campus and new residences in South Campus next to Portage Bay Building are priorities.

COLLOCATION OPPORTUNITIES
• Gear Lab with School of Medicine
• Research Labs
• Maker Spaces

SUMMARY OF FUNCTION AND SPACE NEEDS
• Portage Bay Building is a valuable asset.
• The applied physics lab would benefit faculty Applied Physics Lab would avoid some sites on the waterfront.

ADJACENCIES
• Connections to the waterfront, walkways and docking for the Thomas Thompson and other vessels is essential. Pedestrian access to the new NOAA’s center in Montlake and the Arboretum are priorities.
• Engineering is a major collaborator.

Figure 23

COLLEGE OF THE ENVIRONMENT (COENV)
The College of the Environment plays a major role in advancing our understanding of the environment and our interactions with it. The College is an engine of scholarship, innovation, and education. This is achieved through a unique combination of outstanding faculty studying the Earth’s atmosphere, land, and water systems with those studying human dimensions of the environment, the application of engineering and technological solutions to environmental problems, and the impact of policy on environmental change.2

CURRENT LOCATIONS
Ocean Sciences Building (OCN)
Oceanography Teaching Building (OTB)
Marine Sciences Building (MSB)
Oceanography Building (OCE)
Oceanography Dock Building (ODB)
Oceanography Storage Shed (OSS)
Portage Bay Building (Fisheries Center) (PBB)

SUMMARY OF FUNCTION AND SPACE NEEDS
• The quality of space on campus is impacted without major funding for improvements.
• Most events are held on the weekends, avoiding issues with parking.
• The 2014 study identified overall needs for the college in the South Campus area. The space analysis resulted in developing solutions for immediate growth and right-sizing, however, overall the college did not require additional space for future growth.

ADJACENCIES
• Connections to the waterfront, walkways and docking for the Thomas Thompson and other vessels is essential. Pedestrian access to the new NOAA’s center in Montlake and the Arboretum are priorities.
• Engineering is a major collaborator.

Figure 24

COLLEGE OF THE ENVIRONMENT (COENV)
Future CoEnv Need in South Campus

10,000 ASF
Current Assigned Space in South Campus from UW SIMS Database:
10,093 ASF

1 About, http://coenv.washington.edu/about/

Future CDE Need in South Campus
113,000 ASF
Current Assigned Space in South Campus from 2014 CoEnv Space Study Report:
112,575 ASF

2 About, http://coenv.washington.edu/about/
HEALTH SCIENCE ADMINISTRATION (HSA)
Health Sciences Administration consists of an administrative team and unit structure that provides essential services, centralized resources, and support to advance the vision, core values, and culture of the University of Washington. The mission is to provide a systematic way to meet the needs of the UW mission.

As a centralized resource, HSA also coordinates and supports aspects of all Health Sciences schools, including, personnel and student health and safety, space planning and management, risk management, the Board of Health Sciences Deans, and instructional and administrative support.

CURRENT LOCATIONS
Across South Campus

SUMMARY OF FUNCTION AND SPACE NEEDS
- Multiple faculites include:
 - Health Sciences Academic Services and Facilities (HSASF) describes separately.
 - Environmental Health and Safety (EHS)
 - Health Science Risk Management Office of Animal Welfare
- Provides space in multiple buildings - same occupied by HSA, some occupied by others.
- Assumes authority on unoccupied space.
- Tries to help South Campus use space wisely, instead of self-allocation.
- First priority in terms of needs is teaching space. Would like shared active learning spaces and resources.
- Site-specific needs for Computer Labs.
- Loading dock needs are critical to Health Sciences functions.
- Centralized IT support would be preferable, but each unit has proprietary systems.
- Need common plan for improving quality of space (most important). The quantity of space need falls within the current budget, but could be more efficient.
- South Lake Union will have future research lab space.

SUMMARY OF FUNCTION AND SPACE NEEDS
- Administrative offices need to be within the Health Sciences. Storage space for records do not have to be located on site (150 sf).
- Adjacencies within South Campus are generally flexible.
- Siting instructional spaces within the Library as a joint services would be great, and an opportunity for collaboration. ISL or a protection wet testing space in the Library. Food services integration is possible, and support of the function.
- Simulation labs as shared resources would be better managed to maximize, could share between Nursing Staff and possibly Pharmacy.

CURRENT LOCATIONS
Magruder Health Sciences Center A (HSA)
Magruder Health Sciences Center T (HST)
Office/Archival Storage

SUMMARY OF FUNCTION AND SPACE NEEDS
- Premier academic sciences library in the Northwest.
- A neutral ground, able to facilitate teaching, learning and research effectively and efficiently.
- Focus on optimizing the student and faculty experience, providing on-demand consultations.
- Open to the campus and Health Science schools with 24-hour access. Medicine and Dentistry are highest users, with more students than faculty.
- Teaching and core-teaching workstations in classrooms and stop-in workstations for testing.
- A "laboratory" studio / Maker Space would provide additional collaboration opportunities and shared amenity use for the entire campus and community partners.
- Estimate 20% reduction in space needs, if the current journal collections could be relocated off-campus (Standpoint location is an option).

ADJACENCIES
- Convenience center to Health Sciences facilities, support for major transportation network on NE Pacific Street.

CURRENT LOCATIONS
M Magnuson Health Sciences Center T (HST)
Office/Archival Storage

SUMMARY OF FUNCTION AND SPACE NEEDS
- Physician academic sciences library in the Northwest.
- A neutral ground, able to facilitate teaching, learning and research effectively and efficiently.
- Focus on optimizing the student and faculty experience, providing on-demand consultations.
- Open to the campus and Health Science schools with 24-hour access. Medicine and Dentistry are highest users, with more students than faculty.
- Teaching and core-teaching workstations in classrooms and stop-in workstations for testing.
- A "laboratory" studio / Maker Space would provide additional collaboration opportunities and shared amenity use for the entire campus and community partners.
- Estimate 20% reduction in space needs, if the current journal collections could be relocated off-campus (Standpoint location is an option).

ADJACENCIES
- Convenience center to Health Sciences facilities, support for major transportation network on NE Pacific Street.

Future HSA Need in South Campus
201,000 ASF

Current Assigned Space in South Campus from UW SIMS Database:
209,857 ASF

Future Need in South Campus
72,261 ASF

Current Assigned Space in South Campus from UW SIMS Database:
57,809 ASF
Future Need in South Campus
1,422,000 ASF

Current Assigned Space in South Campus2
854,040 ASF

SCHOOL OF MEDICINE
The UW School of Medicine is a regional resource, and is recognized for its excellence in training primary-care, and for advancing medical knowledge through scientific research. Faculty research activity exceeded $1 billion in grant funding in Fiscal Year 2014, with nearly two-thirds of this activity occurring at a University of Washington site and the remaining one-third at affiliated sites and hospitals. Almost 40% of the SOM research activity occurring at a University of Washington site is located on main campus.

UW School of Medicine faculty are second in the nation in research funding from the National Institutes of Health with more than $650 million of NIH-funded activity in Fiscal Year 2014. Approximately 60% of this NIH-funded activity occurs at a University of Washington site located on main campus, and the remaining one-third at affiliated sites and hospitals. Almost 40% of the SoM research activity occurring at a University of Washington site is located on main campus, and the remaining one-third at affiliated sites and hospitals.

Summary of Function and Space Needs

- Need more space, and more modern space to facilitate the quality and quantity of research and teaching they aspire to do. Top priorities include:
 - Learning and interaction spaces.
 - Cutting-edge research laboratories and physical infrastructure.
 - A state-of-the-art simulation lab.
 - Existing dry labs could be consolidated down to 1 lab reducing space.
 - Additional simulation space needed for upperclassmen.
 - Existing 2 dedicated classrooms do not accommodate active learning needs, or the need for a dedicated lecture hall.
 - Currently no space to gather or connect.

Summary of Adjacencies

- Located in central location near shared services, with opportunity for collaborations.
- Would prefer to remain contiguous unit.
- Collaborative relationships with School of Medicine’s clinical programs, when Nursing occupies research and office space.
SECTION 02. PROGRAM ANALYSIS

SCHOOL OF PHARMACY (SOP)
SOP advances student pharmacists to work in partnership with other health professionals to provide accessible, compassionate, and integrative pharmaceutical care with the goal of enhancing patient outcomes. The SOP provides a scientific leadership through development of innovative research programs in the biomedical sciences, conduct basic translational and outcomes research, and make informed decisions at preclinical, clinical and post-approval stages of drug discovery, development and implementation. The school serves patients and the wider community as committed and compassionate leaders in the use of knowledge and discoveries to help develop and disseminate solutions to complex healthcare problems and promote the health and well-being of regional, national and global populations.

CURRENT LOCATIONS
- Magnuson Health Sciences Center G (HSG)
- HSI
- HST
- SOCC
- HSH

CURRENT SPACE NEEDS BY TYPE --- OCCUPANCY (# OF SEAT)

- WORK/STUDY
- FACULTY
- CLERICAL STAFF
- CLINIC, TREATMENT, EXAM
- CLASSROOM, PI RESEARCHER

Figure 31: HSA Current Space Need by Type / Occupancy

SUMMARY OF FUNCTION AND SPACE NEEDS
- Highly collaborative across the university, interconnected through:
 - Drug discovery
 - Genetics
 - Health outcomes
- Joint appointments and adjunct faculty with:
 - Public Health
 - Chaise Alliances (Public Health)
- School is packed at the seams, additional planned growth will require the school to rent lab space for faculty.
- Mass Spec Lab under the Rotunda is a recharge center, and resource for students across the campus.
- 2 dedicated classrooms, 1 is a clinical lab.
- Growth in faculty and enrollment occurring.
- Expansion or renovation of space in conjunction with UWMC Pharmacy in Hall Health Sciences is important.
- Program spaces would be better utilized if contiguous with the school.
- Shared amenities with other programs/schools could include:
 - Shared resources with other programs/schools could include.
 - Joint appointments and adjunct faculty with:
 - Shared amenities with other programs/schools could include:
 - Joint appointments and adjunct faculty with:
 - Shared resources with other programs/schools could include.

SCHOOL OF SOCIAL WORK (SSW)
The University of Washington School of Social Work, is committed to promoting social and economic justice for poor and oppressed populations and enhancing the quality of life for all. It strives to maximize human welfare through:

- Education of effective social work leaders, practitioners and educators who will challenge injustice and promote a more humane society, and whose actions will be guided by vision, compassion, knowledge and disciplined discovery, and deep respect for cultural diversity and human strengths.
- Research that engenders understanding of complex social problems, illuminates human capacities for problem solving, and promotes effective and timely social intervention.
- Public service that enhances the health, well-being, and empowerment of disadvantaged communities and populations at local, national, and international levels.

The School of Social Work’s collaboration with other Health Sciences programs is critical. Its current location in a dedicated building at 15th Ave NE and NE 41st Street does not provide enough space for the School overall. Discussion with the Dean indicates that it is most important for Social Work units themselves to remain contiguous. Given the severe physical constraints at South Campus, and that relocating to a new, dedicated building in that area is unlikely, a move further south west of 15th Ave NE, or remaining in its current location with sufficient space, would adequately address physical space and adjacency needs with Health Sciences programs. Ideally, the expected expansion of the West Campus will occur and improvements to desired adjacencies would be a result.

Based on the findings from discussions with the Dean, this study assumes SSW will not require dedicated space in South Campus and that space and adjacency needs will be accommodated in the future West Campus area.

Future Need in South Campus

<table>
<thead>
<tr>
<th>Type</th>
<th>Occupancy (# of seat)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>234</td>
</tr>
</tbody>
</table>

Current Assigned Space in South Campus

<table>
<thead>
<tr>
<th>Type</th>
<th>Occupancy (# of seat)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>49,000 ASF</td>
</tr>
</tbody>
</table>

Figure 32: HSA Current Space Need by Type / Occupancy

Critically, the expected expansion of the West Campus will occur and improvements to desired adjacencies would be a result.

Based on the findings from discussions with the Dean, this study assumes SSW will not require dedicated space in South Campus.

Current Assigned Space in South Campus from UW SMS Database:

<table>
<thead>
<tr>
<th>Type</th>
<th>Assignments</th>
<th>Occupancy (# of seat)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>0</td>
<td>0 ASF</td>
</tr>
</tbody>
</table>

Our Mission, http://sop.washington.edu/about/
SECTION 02. PROGRAM ANALYSIS

The University of Washington Medical Center (UWMC) provides a wide range of services, including medical care, research, and education.

Classroom Support Services

- Classroom needs for the next 5 years or so.
- Assumption: excluding Health Sciences, would not be building classroom needs.

Information Technology

- Must have decentralized locations.
- Consolidating router services in G West, an easy option.

Environmental Health and Safety (HSA)

- Needs are low-level.

Rightsizing current space

- 382,000 DGSF

Capital Projects Office

- Needs are low-level.
- No as-built drawings of mechanical systems.

UNIVERSITY OF WASHINGTON MEDICAL CENTER (UWMC)

The rightsizing exercise identified that approximately 382,000 departmental gross square feet (DGSF) of additional space would be required for a broad estimate of preparative and procedural space. The total space need for future growth was estimated at 320,168 DGSF. The result was a total predicted growth need of 727,000 DGSF.

Future Growth

- 200,000 DGSF

Total Growth Needed

- 582,000 DGSF

Total Growth (DGSF)

- 582,000 DGSF

DGSF to Desktop Multiplier

- 1.2x

Total Growth (Desktop)

- 727,000 Desktop

1. See pg 24, for detail on the 1.25 multiplier.
2. Refer to Appendix E for detail on the UWMC space proportions.
Program Analysis

SOUTH CAMPUS ADJACENCIES

Adjacencies and potential synergies between units and amenities are summarized to the right (Figure 33). Physical assets and outlying programs are also included.

<table>
<thead>
<tr>
<th>Physical Assets</th>
<th>Outlying Programs</th>
</tr>
</thead>
<tbody>
<tr>
<td>UWMC</td>
<td>Applied Physics Lab</td>
</tr>
<tr>
<td>Arts and Sciences</td>
<td>Center on Human Development and Disability (CHDD)</td>
</tr>
<tr>
<td>Dentistry</td>
<td>Engineering</td>
</tr>
<tr>
<td>Health Science Administration</td>
<td>Environment</td>
</tr>
<tr>
<td>Libraries</td>
<td>Health Science Administration</td>
</tr>
<tr>
<td>Medicine</td>
<td>Libraries</td>
</tr>
<tr>
<td>Nursing</td>
<td>Libraries</td>
</tr>
<tr>
<td>Pharmacy</td>
<td>Libraries</td>
</tr>
<tr>
<td>Public Health</td>
<td>Libraries</td>
</tr>
</tbody>
</table>

SCHOOL OF MEDICINE ADJACENCIES

These adjacencies are based on generalizations of existing conditions and observations for South Campus programs, which does not include satellite locations or off-campus program needs.

1. The functional and space program analysis of the School of Medicine was conducted by Miranda Leidiich, Capital and Space Planner of the Office of the University Architect, Planning & Management of the University of Washington.

Figure 33: Adjacencies / Based on meeting discussions and verified by each unit

Figure 34: Adjacencies / School of Medicine
CURRENT SPACE VS. FUTURE SPACE NEEDS

Comparisons between what exists (at time of this study), and estimated future space needs demonstrate the relative differences between stakeholders within South Campus. Appendix B includes detailed analysis of space needs for the University of Washington Medical Center.

PARKING NEED

Existing parking availability within South Campus is constrained, with the majority of stalls located in S1 garage, the Surgery Pavilion’s structured garage, and smaller distributed surface lots. Underground, structured and surface parking is also available adjacent to South Campus.

In estimating parking demand, the consultant team identified current demand based on South Campus parking utilization rates. Current demand rates within South Campus were not available. Current demand is estimated to range between 1,060 to 1,490 stalls. Future parking needs were calculated based on growth in square footage, using the current need’s rate to existing square feet.

Currently, South Campus has 956 total parking spaces (not including the UWMC’s Surgery Pavilion lot) which are essentially full. Adding 10% more spaces (1,060) would be the minimum demand. However, there are two complicating factors: some South Campus users park at nearby lots and those who park within South Campus are affiliated with UWMC. Existing data does not parse out these types of users so an existing demand for non-UWMC users is difficult to pinpoint.

Existing data does not distinguish UWMC vs. non-UWMC parking usage and spillover parking issues. The consultant team used overall UW campus parking rates to determine “Maximum Parking Supply Scenarios’” future condition. This approach assumes all South Campus Faculty would be accommodated within South Campus rather than using any adjacent lots. The current UW campus parking rate of 0.54 spaces per thousand square feet (this includes a 10% buffer over current demand), and the existing non-UWMC square feet total yields an existing demand of 1,700 stalls.
SECTION 03.
EXISTING CONDITIONS
INTRODUCTION AND OVERVIEW

This section analyzes and describes the physical nature of the South Campus area, including history of development, existing campus character, and site constraints and opportunities. The analysis also includes assessment of current circulation, parking, development, enabling projects, phasing, open space, and regulatory restrictions per the 2003 UW Campus Master Plan, City of Seattle Land Use Code, and the Washington State Shoreline Master Plan program.

OBSERVATIONS

The intent of this analysis is to provide an informed foundation for developing realistic scenarios which will support the guiding principles as outlined in Section 2. Hereafter creating a more effective, efficient and enjoyable space for students, faculty, university staff, and the community. Regarded as a major barrier between the UW’s Central Campus/NE Pacific Street and South Campus functions as well as the waterfront, the current South Campus development resulted from layering multiple building systems and infrastructures over the past century. Redundancy and inefficiency (general sense of the space within the precinct).

Built Environment

Since construction of each building, few major upgrades have occurred to original systems (the latest “Restore the Core” project occurred in 2008), with the exception of a new animal research and care facility, and addressing challenges including some asbestos remediation, separating mechanical systems for each building/wing, restricted layouts, etc. This section will review in detail the information provided by UW and the evaluations of each building within South Campus, including current systems and building performance.1

1. "Main Reminders - Campus Status and Scope of Work" observed provided by UW.

In general, research and office space is held at a premium, despite its condition or location. Building orientations are primarily east-west, with the largest density occurring along NE Pacific Street. Back-of-house space and/or support is primarily accessed from the south, with a single pinch point entrance for service, visitors, patients and faculty along NE Columbia Road. The contiguous Magnuson Health Sciences Center building cluster is the largest barrier between main campus and the waterfront, and the interior consists of a web of disconnected and confusing corridors with challenged walkability and limited access to daylight. This is emphasized by the "canyon-like" feel of NE Pacific Street to the north, and limited access points from bridges and at-grade entrances.

The total existing gross square footage of South Campus is approximately 4,784,000 gsf, including UW Medical Center.

The potential for integrated academic or research units and collaborative programs is limited due to the existing building layouts and system conditions, a major concern for accomplishing the collective goals of the University.

Open Space

Undoubtedly, parking capacity and mobility/access are the largest deterrents to utilizing the South Campus for a variety of needs and activities. The existing open S1 garage in the heart of South Campus is a physical and perceived barrier to adjacent spaces for many users.

The shoreline stretching from Portage Bay to the west through to the Montlake Cut and east towards Lake Washington is one of the longest shorelines of any campus in the contiguous United States. This is an asset gone under utilized since development took hold in the South Campus area in the 1940s. For additional information concerning the overall campus open space opportunities and constraints, refer to the 2014 Campus Landscape Framework Plan.

ANALYSIS

The following pages contain detailed reviews of existing conditions for civil, mechanical, electrical, plumbing, transportation and open space systems. Each highlights opportunities and constraints, and provides a high-level understanding of the state of South Campus. Some data was provided by the University for the use of this analysis, additional information was obtained through previous UW studies and consultant experience with similar projects.
Opportunity Areas :: All Responses

Memorable / Iconic :: All Responses

Opportunity areas are considered to exist throughout; the more memorable and iconic element is the waterfront; collaboration tends to happen everywhere; and opinions about where the campus heart is concentrate at South Campus Center and T-Wing, though many other spots are also considered. Further detail can be found in Appendix B.

Figure 38: MyCampus Online Survey Selected Results

Figure 39: MyCampus Online Survey Composite Results
REGULATORY REQUIREMENTS : 2003 CAMPUS MASTER PLAN

Current Building Height Allowance
Existing maximum heights are outlined in the 2003 UW Campus Master Plan and determined by:

- 2003 Campus Master Plan Development Standards
- Title 23 of Seattle Municipal Code, Division 3 Overlay Districts
- 23.65 Shoreline District
- 23.69 Major Institution Overlay

<table>
<thead>
<tr>
<th>Zone</th>
<th>U.S.</th>
<th>Max. Coverage</th>
<th>Change</th>
<th>Max. Gross</th>
</tr>
</thead>
<tbody>
<tr>
<td>H1</td>
<td>392,000 sf</td>
<td>50%</td>
<td>2</td>
<td>392,000 sf</td>
</tr>
<tr>
<td>H2</td>
<td>198,000 sf</td>
<td>50%</td>
<td>3</td>
<td>198,000 sf</td>
</tr>
<tr>
<td>H3</td>
<td>85,000 sf</td>
<td>50%</td>
<td>4</td>
<td>85,000 sf</td>
</tr>
<tr>
<td>H4</td>
<td>84,500 sf</td>
<td>50%</td>
<td>5</td>
<td>84,500 sf</td>
</tr>
<tr>
<td>H5</td>
<td>65,000 sf</td>
<td>100%</td>
<td>6</td>
<td>65,000 sf</td>
</tr>
<tr>
<td>TOTAL</td>
<td>2,371,000 sf</td>
<td></td>
<td></td>
<td>2,371,000 sf</td>
</tr>
</tbody>
</table>

Site Capacity
Maximum total site capacity was determined by height and lot coverage maximums to identify maximum allowable gross square feet.
LANDSCAPE / SITE ANALYSIS

The northern boundary of South Campus, bordering Central Campus, is created by an abrupt grade separation which has been reinforced by NE Pacific Street, a major arterial roadway. For the purposes of this study, the western boundary is considered to be 15th Ave NE, the eastern boundary is Montlake Boulevard, and the southern boundary is the waterfront. Although the division is not precise and there are exceptions, schools related to Health Science are grouped along the northern half of South Campus, with College of the Environment departments, including Oceanography and Marine Biology, to the south. The total area of South Campus is 5.3 acres, 58% of which is a combination of utilitarian and recreational open space, and 42% of architectural footprint. South Campus has 3,570 linear feet of waterfront along Portage Bay, and an equivalent extent of urban frontage along NE Pacific.

In contrast to the iconic landscapes of Central Campus, the South Campus landscape has evolved on a piecemeal basis largely in response to architecture and infrastructure. Aside from a few destination spaces, including Portage Bay Vista, San Juan Road, the Glade sculpture, and the E Wing Courtyard, the landscape of South Campus feels fragmented and residual. Wayfinding and orientation are notoriously difficult. Landscape connections to Central Campus are limited to two bridges over NE Pacific Street and at-grade crosswalks at the two ends, one at the west and two toward the east. The Portage Bay waterfront is the strongest landscape feature of South Campus, but it is poorly connected and underutilized.

Landscape Character

In contrast to the iconic landscapes of Central Campus, the South Campus landscape has evolved on a piecemeal basis largely in response to architecture and infrastructure. Aside from a few destination spaces, including Portage Bay Vista, San Juan Road, the Glade sculpture, and the E Wing Courtyard, the landscape of South Campus feels fragmented and residual. Wayfinding and orientation are notoriously difficult. Landscape connections to Central Campus are limited to two bridges over NE Pacific Street and at-grade crosswalks at the two ends, one at the west and two toward the east. The Portage Bay waterfront is the strongest landscape feature of South Campus, but it is poorly connected and underutilized.
SECTION 03. EXISTING CONDITIONS

The South Campus houses one of the largest public functions of the UWMC. It is also home to a strong concentration of research facilities related to Health Sciences, Bioengineering, Genome Sciences, Ocean Sciences, and classroom space. The South Campus serves as the university’s primary waterfront laboratory, and includes a dock and facilities for ocean-going research vessels. NE Columbia Road runs through the center of South Campus, providing access to service and parking with a marginal pedestrian environment. The landscape does not have a strong sense of place, but there is abundant open space along the water and tremendous potential for the waterfront to be a recreational attraction for the larger university community.

Identity

The large, densely-spaced buildings along NE Pacific Street dominate the outward identity of the South Campus, presenting an almost continuous architecturalized edge alongside a busy arterial roadway with few entries at the street level. Within South Campus, the fragmented landscape experience that connects the interior program of medium-scale buildings and parking areas is uninviting for pedestrians and poorly organized for wayfinding and orientation. On the southernmost boundary, the Portage Bay waterfront is relatively open and moderately well-connected, and offers a mixture of landscape and waterfront uses, many of which have value, but most of which also feel incidental or residual. Except for the southernmost edge, access through the landscape and visual connections to the waterfront are obstructed by buildings. Access from the east is very limited due to Montlake Boulevard. Throughout South Campus, outdated infrastructure has been left in place, contributing to a lackluster character.

The High Density Edge

Function

The South Campus houses one of the largest public functions of the UWMC. It is also home to a strong concentration of research facilities related to Health Sciences, Bioengineering, Genome Sciences, Ocean Sciences, and classroom space. The South Campus serves as the university’s primary waterfront laboratory, and includes a dock and facilities for ocean-going research vessels. NE Columbia Road runs through the center of South Campus, providing access to service and parking with a marginal pedestrian environment. The landscape does not have a strong sense of place, but there is abundant open space along the water and tremendous potential for the waterfront to be a recreational attraction for the larger university community.

Identity

The large, densely-spaced buildings along NE Pacific Street dominate the outward identity of the South Campus, presenting an almost continuous architecturalized edge alongside a busy arterial roadway with few entries at the street level. Within South Campus, the fragmented landscape experience that connects the interior program of medium-scale buildings and parking areas is uninviting for pedestrians and poorly organized for wayfinding and orientation. On the southernmost boundary, the Portage Bay waterfront is relatively open and moderately well-connected, and offers a mixture of landscape and waterfront uses, many of which have value, but most of which also feel incidental or residual. Except for the southernmost edge, access through the landscape and visual connections to the waterfront are obstructed by buildings. Access from the east is very limited due to Montlake Boulevard. Throughout South Campus, outdated infrastructure has been left in place, contributing to a lackluster character.

The High Density Edge

Function

The South Campus houses one of the largest public functions of the UWMC. It is also home to a strong concentration of research facilities related to Health Sciences, Bioengineering, Genome Sciences, Ocean Sciences, and classroom space. The South Campus serves as the university’s primary waterfront laboratory, and includes a dock and facilities for ocean-going research vessels. NE Columbia Road runs through the center of South Campus, providing access to service and parking with a marginal pedestrian environment. The landscape does not have a strong sense of place, but there is abundant open space along the water and tremendous potential for the waterfront to be a recreational attraction for the larger university community.

Identity

The large, densely-spaced buildings along NE Pacific Street dominate the outward identity of the South Campus, presenting an almost continuous architecturalized edge alongside a busy arterial roadway with few entries at the street level. Within South Campus, the fragmented landscape experience that connects the interior program of medium-scale buildings and parking areas is uninviting for pedestrians and poorly organized for wayfinding and orientation. On the southernmost boundary, the Portage Bay waterfront is relatively open and moderately well-connected, and offers a mixture of landscape and waterfront uses, many of which have value, but most of which also feel incidental or residual. Except for the southernmost edge, access through the landscape and visual connections to the waterfront are obstructed by buildings. Access from the east is very limited due to Montlake Boulevard. Throughout South Campus, outdated infrastructure has been left in place, contributing to a lackluster character.
SECTION 03. EXISTING CONDITIONS

A Landscape In Motion - Embracing Change While Protecting Continuity

Current planning and design initiatives within South Campus are of a relatively modest scale. Although the construction of the Animal Research Care Facility (ARCF) will be highly disruptive, and will transform the character and use of the existing Portage Bay vista, the project will not change the major relationships between the landscape architecture and architecture on South Campus. Projects just at the boundaries of South Campus, including the Rainier Vista, the Bryants Park project, a new Life Sciences Building, and the West Campus Framework Plan, will have an impact on access to South Campus but not on its identity.

Projects In Planning:
1. Bryants Park
2. West Campus Framework

Projects In Design/Construction:
3. West Campus Utility Plant
4. Animal Research and Care Facility
5. Life Sciences Building
6. Parking Lot E12

Recently Completed Projects:
7. UWMC Addition
8. Husky Stadium

Ongoing Projects:
9. Montlake Triangle
10. University Link

Recent planning and design initiatives within South Campus are of a relatively modest scale. Although the construction of the Animal Research Care Facility (ARCF) will be highly disruptive, and will transform the character and use of the existing Portage Bay vista, the project will not change the major relationships between the landscape architecture and architecture on South Campus. Projects just at the boundaries of South Campus, including the Rainier Vista, the Bryants Park project, a new Life Sciences Building, and the West Campus Framework Plan, will have an impact on access to South Campus but not on its identity.

A Landscape In Motion - Embracing Change While Protecting Continuity

Current planning and design initiatives within South Campus are of a relatively modest scale. Although the construction of the Animal Research Care Facility (ARCF) will be highly disruptive, and will transform the character and use of the existing Portage Bay vista, the project will not change the major relationships between the landscape architecture and architecture on South Campus. Projects just at the boundaries of South Campus, including the Rainier Vista, the Bryants Park project, a new Life Sciences Building, and the West Campus Framework Plan, will have an impact on access to South Campus but not on its identity.

South Campus As Part Of The Larger UW Landscape Mosaic

The 2015 UW Campus Landscape Framework plan demonstrates that the UW campus can be read as a mosaic of different landscape types, and that this diversity of experience is a key strength of the campus. This interpretation has informed recent planning for North Campus housing, and has similar potential to guide thinking about South Campus. The range of landscape program and experiences available on South Campus is typically varied, with the notable exception of woodland groves which contribute strongly to the identity of core campus. The mosaic of South Campus is also more fragmented than that of Central Campus, with no sense of relationship between the parts. Individual pieces of the mosaic are also of varying quality, perhaps best exemplified by the numerous courtyards that provide access to light and air but not much else by way of landscape experience.
SECTION 03. EXISTING CONDITIONS

Topography Analysis / Stepping Down The Hill

Steep topography along the southern edge of Central Campus creates a physical separation from South Campus. As compared to the lower density of independent buildings that is characteristic of Central Campus, the north half of South Campus is a series of large architectural blocks with relatively small, disconnected landscape environments interspersed within the buildings. In combination with the topography, this has established a strong grain to the development of South Campus into north, middle, and waterfront sectors without a supporting network of passage or the integration of a continuous landscape network.

Figure 51: Topography Analysis

NE Pacific Street By Car

The experience of navigating NE Pacific Street by car is varied, but all is considered to be of good or moderate quality. However, access into South Campus from Pacific Street is very limited. The only vehicular access points into South Campus are at the two ends, 15th Ave NE and alongside the Surgery Pavilion, but these two roadways informally connect to form a through road. NE Pacific Street has no connection to the Burke-Gilman Trail, which is elevated above at the Central Campus level. The configuration of NE Pacific Street, including its four-lane arterial-speed traffic, contributes to the feeling that South Campus is hard to access and unwelcoming.

NE Pacific Street As Pedestrian And Cyclist

NE Pacific Street is a challenging environment for pedestrians and bicycles at street level: there is no bike lane; fast moving traffic; and the northern edge has no sidewalk. The southern edge has a generous sidewalk, but there is an uncomfortable proximity to the high volume of traffic, and there are long stretches without access into the adjacent buildings. The street trees on both sides and the woodland grove on the north side of the street create a strong, shaded frame to the street. The Burke-Gilman Trail is an attractive alternative for traveling along the north side, at the elevation of Central Campus, but the only connections between north and south are at the extreme ends, so users are left feeling stranded on one side or the other.

Figure 52: Quality Mapping

Figure 53: NE Pacific Street looking west
University Of Washington Myplaces Survey 2013

Iconic Landscapes

The UW can boast of several iconic landscape spaces that are beloved by many users. Although several South Campus spaces were identified as iconic by individual users, the Portage Bay Vista and the Montlake Cut were the only two that were identified as iconic by multiple individuals, and even these received limited recognition when compared to places like Rainier Vista or the Sylvan Theater. It is likely that the waterfront, in particular, could become a memorable and iconic UW landscape if improvements were made along its length, and if stronger landscape connections were created that could link Central Campus and more parts of South Campus to Portage Bay.

Favorite Landscapes

Open spaces for sitting, walking, and gathering were among the favorite landscapes identified in South Campus. The Portage Bay Vista is notable in this regard, as are a number of spaces along the waterfront at the Montlake Cut. “The Glade” sculpture, at the eastern end of South Campus, south of UWMC was also identified as a favorite by many staff and students. The survey findings on perceptions of iconic landscapes shows that there is a clear disparity between the strong identification of a connected network of favorite spaces on Central Campus as compared to South Campus, where the connections to favorite landscapes are much more fragmented and weaker in general. Although the Health Sciences courtyards are the most accessible landscapes to the greatest concentration of people in South Campus, very few have identified these as favorite landscape spaces.

South Campus As A Threshold To The Portage Bay Waterfront

The UW campus has been structured with a strong core that radiates outward and is interconnected through orbital roadways and paths. Fostering a stronger connection between South Campus and the main axis of Central Campus, which is a latent opportunity in the existing structure, would bring multiple benefits. For South Campus users, it would be easier to connect with the broader UW community in a variety of ways. For Central Campus users, it would remove the current sense of obstruction from the Portage Bay waterfront, creating access to experiences that are very different from the UW’s Lake Washington waterfront.
SECTION 03. EXISTING CONDITIONS

POTABLE WATER

The area is served by an existing looped water main that serves the University of Washington (UW) South Campus. The water main travels north and south from a point near NE Pacific Street and 15th Avenue NE, adjacent to William R. Foege, and a 10-inch Master Meter located south of the Ocean Sciences Building, east of Brooklyn Avenue.

The water system is in generally good condition, except for an existing 8-inch water main distribution system that was installed in the 1960s. The water mains are typically installed with 36 inches of cover from finished grade to top of pipe. Water mains are installed with 36 inches of cover from finished grade to top of pipe. The water system is able to serve the full build-out of South Campus area west of the Ocean Sciences Building and east of Brooklyn Avenue.

The overall condition of the tunnel is generally good. The tunnel manholes serve many purposes, including access to take equipment in or out, and ventilation. The tunnel manholes serve many purposes, including access to take equipment in or out, and ventilation.

The tunnel is typically deep enough so a building can be built over the tunnel. When this occurs, the tunnel should be incorporated into the building structure. The tunnel is typically deep enough so a building can be built over the tunnel. When this occurs, the tunnel should be incorporated into the building structure.

The storm system has adequate capacity to serve the South Campus area west of the Ocean Sciences Building and east of Brooklyn Avenue. The storm system has adequate capacity to serve the South Campus area west of the Ocean Sciences Building and east of Brooklyn Avenue.

The storm system has adequate capacity to serve the full build-out of South Campus area west of the Ocean Sciences Building and east of Brooklyn Avenue. The storm system has adequate capacity to serve the full build-out of South Campus area west of the Ocean Sciences Building and east of Brooklyn Avenue.

The hydraulic capacity of the existing storm drain mains serving South Campus is limited. The hydraulic capacity of the existing storm drain mains serving South Campus is limited.
TRANSPORTATION

This section includes an inventory of existing transportation conditions in South Campus to provide a basis for future planning and recommendations. As development and expansion options for the University of Washington's South Campus are explored, it is important to consider the internal and external connectivity needs of all modes. Parking is also paramount concern to South Campus visitors, who include many University of Washington Medical Center (UWMC) patients unfamiliar with the area. The parking supply, as well as the signage and wayfinding, have been reviewed by the South Campus Study Advisory Committee.

Roadway Network

The South Campus area is bound by NE Pacific Street to the north, 15th Avenue NE to the west, Montlake Boulevard NE to the east, and Portage Bay to the south. Both NE Pacific Street and Montlake Boulevard NE are wide arterials that separate South Campus from adjacent land uses and other parts of campus. The South Campus area is bounded by NE Pacific Street in particular has been identified as a connectivity needs of all modes. Parking is also paramount concern to South Campus visitors, who include many University of Washington Medical Center (UWMC) patients unfamiliar with the area. The parking supply, as well as the signage and wayfinding, have been reviewed by the South Campus Study Advisory Committee.

Roadway Network

The South Campus area is bound by NE Pacific Street to the north, 15th Avenue NE to the west, Montlake Boulevard NE to the east, and Portage Bay to the south. Both NE Pacific Street and Montlake Boulevard NE are wide arterials that separate South Campus from adjacent land uses and other parts of campus. The South Campus area is bound by NE Pacific Street in particular has been identified as a connectivity needs of all modes. Parking is also paramount concern to South Campus visitors, who include many University of Washington Medical Center (UWMC) patients unfamiliar with the area. The parking supply, as well as the signage and wayfinding, have been reviewed by the South Campus Study Advisory Committee. The main interior roadways are NE Columbia Road and San Juan Road (see Figure 56), both of which exclusively provide access to buildings within South Campus rather than serving pass-through traffic. These roadways are low-speed and have frequent marked crosswalks. There are no traffic signals within South Campus intersections, which are controlled by stop signs or traffic circles. There is also a network of local roads providing access to individual buildings. There are only two access points for vehicles to enter the interior of the South Campus. Vehicles may enter NE Pacific Street or through Gatehouse 6 (shown in Figure 57), with just over half entering through Gatehouse 6, roughly a third entering through the Surgery Pavilion entrance, and the remainder using the main entrance on NE Pacific Street. The main entrance includes a circular driveway parking permit bypass lane.

Table 03 summarizes the level of vehicle traffic passing through South Campus on a typical weekday. NE Columbia Road has pass-through traffic with just over half entering through Gatehouse 6, roughly a third entering through the Surgery Pavilion entrance, and the remainder using the main entrance on NE Pacific Street. The main entrance includes a circular driveway parking permit bypass lane.

Figure 58 shows the inbound and outbound traffic counts at Gatehouse 6. Table 03 summarizes the level of vehicle traffic occurring between 4 and 6 PM.

Paying availability and wayfinding have been raised as key issues for South Campus. Providing clear wayfinding to convenient parking locations is especially critical for patients and their families who may not be familiar with the area. This section summarizes the existing parking inventory as well as current utilization rates and time of day patterns. UWMC patients are directed to use the Triangle Parking Garage or Surgery Pavilion Parking Garage. Disabled patients may use existing parking at the UWMC main entrance on NE Pacific Street, shown in Figure 59. The main entrance includes a circular driveway used for drop-off and pick-up.

There are wayfinding signs in place along eastbound and westbound NE Pacific Street. However, given the roadway network in the area, if a visitor misses a turn or needs assistance, it can be difficult to backtrack, and connections to back up the correct area. The South Campus includes seven parking lots with a total of 956 spaces. Of those spaces, 80 percent are provided in the S1 lot south of NE Columbia Road. In addition, the Surgery Pavilion Parking Garage just

<table>
<thead>
<tr>
<th>Lot</th>
<th>General</th>
<th>Disability/Wheelchair</th>
<th>Motorcycle</th>
<th>Loading</th>
<th>UW Restricted</th>
<th>Other Restricted</th>
<th>Supply</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>637</td>
<td>97</td>
<td>37</td>
<td>6</td>
<td>22</td>
<td>43</td>
<td>862</td>
</tr>
<tr>
<td>S5</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>S6</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>S7</td>
<td>5</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>12</td>
</tr>
<tr>
<td>S8</td>
<td>6</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>S9</td>
<td>9</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>S12</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>South Campus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Triangle Garage</td>
<td>245</td>
<td>75</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>350</td>
</tr>
<tr>
<td>E12</td>
<td>996</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>998</td>
</tr>
<tr>
<td>E13</td>
<td>102</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>104</td>
</tr>
<tr>
<td>Portage Bay</td>
<td>387</td>
<td>0</td>
<td>20</td>
<td>0</td>
<td>28</td>
<td>0</td>
<td>535</td>
</tr>
<tr>
<td>Total</td>
<td>2520</td>
<td>99</td>
<td>2</td>
<td>1</td>
<td>28</td>
<td>0</td>
<td>2650</td>
</tr>
</tbody>
</table>

Table 04 summarizes parking supply by type of space. Total supply is 4,396 spaces, of which these in the S1 lot south of NE Columbia Road. In addition, the Surgery Pavilion Parking Garage just

<table>
<thead>
<tr>
<th>Lot</th>
<th>General</th>
<th>Disability/Wheelchair</th>
<th>Motorcycle</th>
<th>Loading</th>
<th>UW Restricted</th>
<th>Other Restricted</th>
<th>Supply</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>637</td>
<td>97</td>
<td>37</td>
<td>6</td>
<td>22</td>
<td>43</td>
<td>862</td>
</tr>
<tr>
<td>S5</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>S6</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>S7</td>
<td>5</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>12</td>
</tr>
<tr>
<td>S8</td>
<td>6</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>S9</td>
<td>9</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>S12</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>South Campus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Triangle Garage</td>
<td>245</td>
<td>75</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>350</td>
</tr>
<tr>
<td>E12</td>
<td>996</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>998</td>
</tr>
<tr>
<td>E13</td>
<td>102</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>104</td>
</tr>
<tr>
<td>Portage Bay</td>
<td>387</td>
<td>0</td>
<td>20</td>
<td>0</td>
<td>28</td>
<td>0</td>
<td>535</td>
</tr>
<tr>
<td>Total</td>
<td>2520</td>
<td>99</td>
<td>2</td>
<td>1</td>
<td>28</td>
<td>0</td>
<td>2650</td>
</tr>
</tbody>
</table>

Table 04 summarizes parking supply by type of space. Total supply is 4,396 spaces, of which 80 percent are provided in the S1 lot south of NE Columbia Road. In addition, the Surgery Pavilion Parking Garage just

| Notes: 1. Lots with more than 100 spaces are included in the analysis.

UW South Campus Study

64

65
include data for the Surgery Pavilion Garage which is provided for UWMC patients and visitors. At the four large lots adjacent to South Campus, 95 percent of spaces are open to the general public. Table 05 summarizes utilization data for each parking lot. UW Transportation Services counted the number of vacant spots during weekdays in October 2014. The busiest day of each week was used to determine utilization. Anecdotal feedback from the Advisory Committee is borne out by the survey results: on the busiest weekday, 98 percent of parking stalls are in use. Utilization is lower in the large adjacent lots, with an average of 84 percent of stalls used on the busiest weekday. The main South Campus parking lot (S1) and the Triangle Garage are at 100 and 99 percent utilization, respectively.

Table 05: Parking Lot Utilization
<table>
<thead>
<tr>
<th>Parking Lot</th>
<th>Average Utilization</th>
</tr>
</thead>
<tbody>
<tr>
<td>WITHIN SOUTH CAMPUS</td>
<td></td>
</tr>
<tr>
<td>S1</td>
<td>100%</td>
</tr>
<tr>
<td>S2</td>
<td>93%</td>
</tr>
<tr>
<td>S6</td>
<td>69%</td>
</tr>
<tr>
<td>S7</td>
<td>30%</td>
</tr>
<tr>
<td>S8</td>
<td>30%</td>
</tr>
<tr>
<td>S9</td>
<td>88%</td>
</tr>
<tr>
<td>S12</td>
<td>87%</td>
</tr>
<tr>
<td>South Campus Subtotal</td>
<td>98%</td>
</tr>
<tr>
<td>LARGE LOTS ADJACENT TO SOUTH CAMPUS</td>
<td></td>
</tr>
<tr>
<td>Triangle Garage</td>
<td>59%</td>
</tr>
<tr>
<td>E12</td>
<td>85%</td>
</tr>
<tr>
<td>E15</td>
<td>7%</td>
</tr>
<tr>
<td>Portage Bay Garage</td>
<td>82%</td>
</tr>
<tr>
<td>Adjacent Lot Subtotal</td>
<td>84%</td>
</tr>
<tr>
<td>GRAND TOTAL</td>
<td>87%</td>
</tr>
</tbody>
</table>

Data collected at campus gatehouses indicates time of day patterns of parking demand, as shown in Figure 06. Note that this data represents only the subset of users that receive permits from the gatehouse; long-term permit holders are not included. At the main South Campus parking lot, issued permits peak during the morning hours 7:00 AM – 9:30 AM and then tend to level off throughout the remainder of the day.

The low volume and speed of vehicle traffic within South Campus provides a comfortable environment for pedestrians and bicycles. Marked crosswalks are provided at short intervals, as shown in Figure 61. Smaller access roads, such as the portion of San Juan Road parallel to Portage Bay, do not have sidewalks. Further east, sidewalks are provided along the south side of NE Pacific Street, bordering South Campus. However, portions of sidewalk are missing along the north side of NE Pacific Street. In several locations, paths are provided from NE Pacific Street to the Burke-Gilman Trail running just north of the roadway, which provides an alternate route to pedestrian and bicycles. The 27-mile Burke-Gilman Trail, stretching from Ballard to Bothell, provides excellent non-motorized access to the South Campus area. There are two overpasses connecting the Burke-Gilman Trail/Central Campus to South Campus: the T Wing Overpass and the Hitchcock Overpass. In addition, there are several marked crosswalks across NE Pacific Street at key locations. The topography of the Central Campus and Burke-Gilman Trail makes the overpasses a convenient way to connect to South Campus.

While ADA facilities are often provided in South Campus, particularly at newer buildings and roadways, there are some areas lacking convenient ramps or sidewalks. Bicycle lanes are provided between the NE Boat Street/15th Avenue NE intersection and Gatehouse 6. Within the interior of South Campus, there are no dedicated bicycle facilities. However, the low traffic volume and low-speed nature of the street network make sharing the roadway comfortable. A Pronto bikeshare station is located near Gatehouse 6, providing a convenient biking option to South Campus visitors (see Figure 63). UW Transportation Services conducts annual counts of the number of bicycles present on campus. The 2013 report documented 325 parked bicycles in South Campus. There are a total of 784 bike rack spaces as well as 270 bike lockers in South Campus. This translates to a 42 percent bike rack utilization, indicating there is ample bike parking supply overall. However, there are some locations within South Campus where use is at or exceeding capacity, indicating additional supply is necessary. These include Health Sciences I-Court, Hitchcock Overpass, UWMC Southeast Entrance, Freige Breezeway, and S1 Parking Garage East.
SECTION 03. EXISTING CONDITIONS

The University District as a whole is well served by transit, although much of the service is concentrated to the north of South Campus, requiring users to cross NE Pacific Street. NE Pacific Street has a bus-only lane from approximately the T-Wing Overpass to Montlake Boulevard NE, allowing buses to bypass congestion approaching the Montlake Bridge (see Figure 2). The closest transit stops to South Campus are along NE Pacific Street, at 15th Avenue NE and at NE Pacific Place. Table 06 summarizes boardings and alightings at those two stops on a typical day in Spring 2013. The busiest stop is westbound at NE Pacific Place with nearly 2,500 boardings and alightings between 6 AM and 6:15 PM.

Table 07 summarizes the routes directly serving South Campus. They include connections to destinations throughout Seattle as well as to regional centers on the eastside and in the south sound.

Several shuttle systems currently serve South Campus. These shuttle systems provide connections to other medical facilities throughout Seattle.

- UW operates the Health Sciences Express which connects UWMC (see Figure 65), Harborview Medical Center, UW Roosevelt Clinic, and the UW Tower. Shuttles run every 15 minutes from 6 AM to 5:45 PM and are available to UW faculty, staff, students, medical center patients and their families. Service is provided on weekdays only.

- The UW School of Medicine and Fred Hutchinson Cancer Research Center partner to run a shuttle system connecting UWMC, Fred Hutch, the UW School of Medicine South Lake Union campus, and Harborview Medical Center. Shuttles run every 15 minutes from 6:45 AM to 7:20 PM on weekdays only.

- Seattle Cancer Care Alliance (SCCA) operates a shuttle connecting SCCA, UWMC, Seattle Children’s Hospital, and two of SCCA’s housing facilities: SCCA House and the Pete Gross House. The shuttle serves patients and their families, and runs every 40 minutes on weekdays between 7:00 AM and 7:30 PM.

In 2016, Sound Transit will open its extension of Link light rail to the University of Washington station, just south of Husky Stadium. Given its close location, the UW Station is expected to serve many South Campus visitors, substantially improving transit convenience to Capitol Hill, Downtown, and points south.

Summary

The South Campus area has limited connectivity to adjacent land uses, with NE Pacific Street in particular acting as a barrier to the rest of campus. Within South Campus, the pedestrian and bicycle environment is generally comfortable despite lacking dedicated facilities in some areas. This is due to the low volume and speed of vehicle traffic passing through South Campus’ interior roadway network. Demand for vehicle parking within South Campus sometimes exceeds supply, although there is capacity available in nearby campus parking facilities. In addition, parking signage and wayfinding is a concern due to the high volume of visitors to South Campus.

Table 06: Bus Stop Activity Along NE Pacific Street

<table>
<thead>
<tr>
<th>Time of Day</th>
<th>NE Pacific Place (Eastbound)</th>
<th>NE Pacific Place (Westbound)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AM Peak (6-9 AM)</td>
<td>44 / 353</td>
<td>99 / 198</td>
</tr>
<tr>
<td>Midday (9 AM - 3:15 PM)</td>
<td>163 / 369</td>
<td>371 / 210</td>
</tr>
<tr>
<td>PM Peak (3:15 - 6:30 PM)</td>
<td>373 / 40</td>
<td>793 / 57</td>
</tr>
</tbody>
</table>

Table 07: Transit Routes Serving South Campus

<table>
<thead>
<tr>
<th>Route</th>
<th>Destinations</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>Lawart/Hill, Downtown</td>
</tr>
<tr>
<td>43</td>
<td>Capitol Hill, Downtown</td>
</tr>
<tr>
<td>44</td>
<td>Belltown, Wallingford, Montlake</td>
</tr>
<tr>
<td>48</td>
<td>Loyd Heights, Ravenna, Capitol Hill, Mount Baker</td>
</tr>
<tr>
<td>167</td>
<td>Renton, Kent</td>
</tr>
<tr>
<td>197</td>
<td>Kent</td>
</tr>
<tr>
<td>271</td>
<td>Bellevue, Issaquah</td>
</tr>
<tr>
<td>277</td>
<td>Juanita</td>
</tr>
<tr>
<td>540</td>
<td>Kirkland</td>
</tr>
<tr>
<td>542</td>
<td>Green Lake, Redmond</td>
</tr>
<tr>
<td>556</td>
<td>Northgate, Issaquah</td>
</tr>
<tr>
<td>586</td>
<td>T Megan</td>
</tr>
</tbody>
</table>

Figure 66: Bus route along NE Pacific Street

Figure 65: Shuttle stops on south side of UWMC

Figure 64: Bus only lane on eastbound NE Pacific Street.
In order to determine the long-term future of South Campus buildings, a high-level assessment of physical and functional conditions was performed. This assessment was informed and data provided by a range of sources, including:

- 2014 Office of Financial Management (OFM) Condition Rating
- 2014 Confluenc Inc. Model
- 2005 Health Science Center Assessment
- Building age and system types
- Input from UW staff

Physical Assessment
This assessment is a subjective analysis of the current condition of building systems and their expected ability to perform and sustain long-term use. A summary of the effect of future development within South Campus on existing utility infrastructure including centralized mechanical and electrical systems can be referenced in Section 5.

Functional Assessment
This is the result of qualitative analysis by the consultant team based on user input and visual observations. It included criteria that relate to permanent characteristics of the building which support (or do not support) the overall functions and activities likely to occur, either currently or in the future. Each building, without requiring major overhauls to building structure, envelope, or configuration, was evaluated for its ability to support:

- **Usability**: A user’s ability to remain oriented within and outside the building
- **Accessibility**: A user’s general level of comfort in the physical space. This could include clear floor-to-ceiling heights, convenient travel throughout, structural flexibility for open interior spaces, etc.
- **Image/Identity**: The image and identity of the university
- **Wayfinding**: The general condition of each building is summarized in the following pages, resulting in long-term assumptions based on the analyses and final discussions with the UW directors of Facilities Services, Finance, and Business Services, and Engineering and Operations.
- **Functional Fit**: A building’s ability to efficiently and effectively support its current or preferred future use.
- **Flexibility of Uses**: The ability to house a range of uses and be easily converted from one to another. For example, from lab to office to classroom, etc.
- **Image/Identity**: The image and identity of the university
- **Wayfinding**: The general condition of each building is summarized in the following pages, resulting in long-term assumptions based on the analyses and final discussions with the UW directors of Facilities Services, Finance, and Business Services, and Engineering and Operations.

Special Considerations
Per the Shoreline Management Act, building replacements-in-kind within the shoreline setback is not a given. New construction must follow height and lot coverage restrictions. Therefore, replacement of large structures such as Marine Sciences, with equal square footage is not possible. Major renovation, instead of replacement, would be the most effective way to address such conditions.

Long Term Assumptions
Figure 68 identifies final long-term assumptions based on the analyses and final discussions with the UW directors of Facilities Services, Finance and Business Services, and Engineering and Operations.
EARTHQUAKE READINESS:

Construction Type:

General

Comfort

Functional Fit

Flexibility of Uses

Building Performance

Estimated date of construction: 1987

CHS

HSA

HSbb

HSJ

HSH

OCE

Pbb

UMSA

UMEE

UMSP

UMSA¹

UMSP¹

UMSA¹

UMEE

UMSP¹

Figure 6B: Building Condition Matrix

This is a map showing the building condition assessment for various buildings on the campus. The map uses different colors to indicate the condition of the buildings, with green indicating high performance, yellow indicating average, and red indicating poor condition. The buildings are labeled with different letters and numbers, indicating their location on the campus. The condition assessment is based on the Earthquake Readiness Advisory Committee (ERAC) scores, which are designed for buildings built prior to the 1991 ERAC completion. These buildings will have "low" damage index and safety index values. Source: email from Tom Pittsford [tomp@uw.edu] to Lindsay Cameron dated August 31, 2015.
SECTION 03. EXISTING CONDITIONS

LONG TERM ASSUMPTIONS

Buildings to Remain

Rounded GSF

Foege Bioengineering/ Genome Sciences Building 32,000 gsf
H Wing 211,000 gsf
K Wing - Falkow Biomedical Sciences 65,000 gsf
Marine Sciences Building and dock 12,000 gsf
Ocean Sciences Building 19,000 gsf
Oceanography Teaching Building 10,000 gsf

Campus Facilities and Engineering directors identified eight structures that are expected to remain, for long term planning purposes (for assessment see pages 72-73). This is not definitive, but serves to guide the development of long term planning scenarios and the final recommended plan. Should additional buildings remain in the long term, the goals and framework of the South Campus Plan (described in the next section) still apply and should be retained.

T WING

As one of the largest buildings in the South Campus area (almost 500,000 gsf), and being located at the core of South Campus, T Wing needed to be studied in further detail to understand the potential for phased replacement over time. (A full replacement to house right-sized functions all at once would be difficult, requiring another site and full funding for over 500,000 gsf.)

Originally built in 1972, the building was designed in three zones to accommodate three different types of uses: research (west), teaching (center), and office (east). Each zone is supported by independent mechanical and structural systems providing the opportunity to phase (its replacement).

Given this condition, a phased replacement of T-Wing is considered feasible.
In summary, existing conditions that fall short of supporting South Campus’ guiding principles:

1. Improve CONNECTIVITY (facility) + COLLABORATION
 - Impenetrable edges
 - Lack of connections between departments and the rest of South Campus
 - Difficult wayfinding
 - Abundant poor quality space
 - Marginal technology in many areas
 - Aging buildings and infrastructure
 - Organization silos
 - Lack of gathering spaces
 - Critical program adjacencies lacking
 - Innovation through collaboration is hindered
 - Open space not connected

2. Emphasize DIVERSITY
 - Lack of interaction opportunities
 - Monolithic

3. Establish SENSE OF PLACE
 - Poor public image on NE Pacific St
 - Looks inward, not outward
 - Lacks positive unique identity
 - Not welcoming

4. Promote PERSONAL WELL-BEING
 - Unhealthy space
 - Lack of daylight
 - Minimal connectivity to outside world
 - Confusing
 - Minimal access to quality open space

5. Strategically BALANCE EXISTING AND FUTURE RESOURCES
 - Unique site characteristics (visibility on NE Pacific St, waterfront, adjacency to central campus) not leveraged
 - Long term lack of potential within many existing buildings to support future functions

The South Campus must foster an environment of interprofessional collaboration for multiple Health Sciences programs, other UW academic programs, and the UW Medical Center supporting the UW Campus as a world-class institution. Many of the South Campus facilities are constraining growth and development of programs, thereby constraining recruitment and retention of faculty and students. The following sections identify a long-term vision that supports current needs, growth, and a development framework for the future of South Campus.
Figure 73: Planning Alternatives

SECTION 04.
DEVELOPING THE PLAN
SECTION 04. DEVELOPING THE PLAN

APPROACH
A series of “Givens” that must be addressed in every option helped to guide the team, along with the plan’s Guiding Principles. The “Givens” are categorized by overall “Goals,” “Constraints,” and “Constants and Assumptions.”

Focused questions that informed the approach to developing planning considerations, alternatives and ultimately a final hybrid scheme included:

- How would phasing in this dense area of campus allow for physical growth, new buildings and renovated space, and expansion of academic programs?
- Which programs and activities could/should remain in a future South Campus?
- Given the existing density of this area, what will optimize stewardship of this limited land resource?
- How might the unique waterfront location of the South Campus be best celebrated and utilized as an asset?
- How might the relationship between South Campus and its adjacent campus areas be strengthened?

The analysis of the future character of South Campus was informed by the historic development of the overall campus, the goals reflected in recent plans and in focused conversations with current and future area stakeholders.

GOALS
South Campus is a place of extraordinary potential. With improvements, South Campus will add value to the whole campus and enhance the UW mission. In addition to the Guiding Principles, the study process identified the following goals:

- Maximize Collaboration opportunities
- Internal connections
- Inter-professional Education (IPE)
- UWHS / UWMC adjacency
- Central gathering spaces

Connections to adjacent zones
- West: • Skamania Lane • Waterfront • Pacific Street
- North: • Existing bridges • Pacific Street
- East: • New pedestrian path under the Montlake Bridge • Waterfront • Pacific Street

Improve
- Waterfront
- Open Space Framework and public realm
- Edges (NE Pacific Street)
- Pedestrian experience

Accommodate
- Health Sciences program
- Parking Need

Minimize Vehicular/Parking/Service presence

Ensure Feasibility and that implementation is possible given physical constraints and phasing.
CONSTRANTS
A number of constraints were also identified:

- **Phased Development** over time
- **Programs** to be accommodated with minimal interruption (only one move if possible)
- **Vehicular Access + Parking**
 - NE Pacific Street access required to accommodate growth
- **Daylight** access to greenhouses at the new Life Sciences Building across NE Pacific Street
- **Upzoning** to be explored
- **Current Zoning** to be studied as part of the recommended plan to identify which units might have to move off South Campus
- **Shoreline Management Act** regulations
- **Montlake Corridor** requires increased capacity
- **Timing and Extent of Funding** is unknown
- **Existing Infrastructure** capacity and condition to be addressed (utility expansion required)
- **No Obvious Surge Strategy**

CONSTANTS AND ASSUMPTIONS
Several “Constants and Assumptions” were also critical givens for each scenario. This helped to provide clear direction for long term planning strategies and helped to form the overall structure of the South Campus Plan.

- **Buildings to Remain** long-term
 - Animal Research and Care Facility (ARCF)
 - Central Utility Plant Building (CUP)
 - Foege Bioengineering/Genome Sciences Building
 - H Wing
 - K Wing
 - Marine Sciences Building and dock
 - Marine Sciences Building and dock
 - Ocean Sciences Building
 - Portage Bay Building (East Wing)
 - UWMC Montlake Tower
 - UWMC Surgery Pavilion
- **Protected Landscapes**
 - Portage Bay Vista
 - “The Glade” sculpture
- **Parking Underground** integrated with each building

Figure 74: Constraints and Assumptions
FRAMEWORK
Four specific form-driving elements we developed that had to be retained in every scenario: Grid and Connection, Open Space, the Waterfront, and Views.

Grid and Connections
Establishing an intersecting grid of through-connections will help to improve South Campus porosity and connectedness with a welcoming identity.

Direct connections to the 1909 Olmsted brothers’ framework of the Central Campus are a critical strategy to help reconnect South Campus to the Central Campus, and the Central Campus to the shoreline. Connections to West and East Campus, formally and informally are similarly critical.

Open Space
Providing adequate open space in the form of a connected network is critical to strengthening a sense of place and to support the density required to accommodate all South Campus functions. This should extend to all the areas adjacent to South Campus. (Different approaches to a connected open space network are studied later in this section, all striving to create identity, support community and place-making, and enhance wayfinding.)

Frame Work
Waterfront
With the longest campus shoreline in the country, the University of Washington’s waterfront is an underutilized amenity. The South Campus has the most potential of all campus areas to expand direct water access and visual connections.

Expansion of waterfront connectivity would help to complete the link between East Campus and West Campus, allow for public access to the shoreline at Portage Bay, and enhance the character of the South Campus.

Views
Access to daylight and views are essential elements to overall health and well-being. The scenarios must maximize views.
SECTION 04. DEVELOPING THE PLAN

UW ACADEMIC PROGRAM NEED

The program analysis in Section 2 identifies current and projected growth figures for programs located in South Campus. The figure below illustrates the total program represented as 10-story blocks to convey the required density. Open space, circulation, and regulatory constraints will shape the program into planning scenarios that follow.

The program analysis in Section 2 identifies current and projected growth figures for programs located in South Campus. The figure below illustrates the total program represented as 10-story blocks to convey the required density. Open space, circulation, and regulatory constraints will shape the program into planning scenarios that follow.

Existing Program *
Additional Future Program Need **

* UW Medical Center current program included.
** UW Medical Center future program need not included.

Figure 79: Program Need Framework

ZONING CAPACITY VS. PROGRAM

The existing regulatory conditions as set by the 2003 UW Campus Master Plan cannot accommodate the total future needs identified in Section 2. Current zoning and shoreline regulations allow for only a total of approximately 5.2M gsf. This would require some functions to move outside of South Campus. Accommodating all of the estimated future program needs, without loss of critical functions, would require increased height allowances.

All development strategies explored in this section accommodate the total 6.8M gsf of future needs, assuming an upzone. This will allow for the projected growth, and the right-sizing and decompression of existing space to meet current needs required for every program. The total capacity of the upzoned scenario as shown here accommodates approximately 7.1M gsf.

Figure 80: Proposed Upzoning Building Height

The existing regulatory conditions as set by the 2003 UW Campus Master Plan cannot accommodate the total future needs identified in Section 2. Current zoning and shoreline regulations allow for only a total of approximately 5.2M gsf. This would require some functions to move outside of South Campus. Accommodating all of the estimated future program needs, without loss of critical functions, would require increased height allowances.

All development strategies explored in this section accommodate the total 6.8M gsf of future needs, assuming an upzone. This will allow for the projected growth, and the right-sizing and decompression of existing space to meet current needs required for every program. The total capacity of the upzoned scenario as shown here accommodates approximately 7.1M gsf.

Figure 80: Proposed Upzoning Building Height

The existing regulatory conditions as set by the 2003 UW Campus Master Plan cannot accommodate the total future needs identified in Section 2. Current zoning and shoreline regulations allow for only a total of approximately 5.2M gsf. This would require some functions to move outside of South Campus. Accommodating all of the estimated future program needs, without loss of critical functions, would require increased height allowances.

All development strategies explored in this section accommodate the total 6.8M gsf of future needs, assuming an upzone. This will allow for the projected growth, and the right-sizing and decompression of existing space to meet current needs required for every program. The total capacity of the upzoned scenario as shown here accommodates approximately 7.1M gsf.

Figure 80: Proposed Upzoning Building Height

The existing regulatory conditions as set by the 2003 UW Campus Master Plan cannot accommodate the total future needs identified in Section 2. Current zoning and shoreline regulations allow for only a total of approximately 5.2M gsf. This would require some functions to move outside of South Campus. Accommodating all of the estimated future program needs, without loss of critical functions, would require increased height allowances.

All development strategies explored in this section accommodate the total 6.8M gsf of future needs, assuming an upzone. This will allow for the projected growth, and the right-sizing and decompression of existing space to meet current needs required for every program. The total capacity of the upzoned scenario as shown here accommodates approximately 7.1M gsf.

Figure 80: Proposed Upzoning Building Height

The existing regulatory conditions as set by the 2003 UW Campus Master Plan cannot accommodate the total future needs identified in Section 2. Current zoning and shoreline regulations allow for only a total of approximately 5.2M gsf. This would require some functions to move outside of South Campus. Accommodating all of the estimated future program needs, without loss of critical functions, would require increased height allowances.

All development strategies explored in this section accommodate the total 6.8M gsf of future needs, assuming an upzone. This will allow for the projected growth, and the right-sizing and decompression of existing space to meet current needs required for every program. The total capacity of the upzoned scenario as shown here accommodates approximately 7.1M gsf.

Figure 80: Proposed Upzoning Building Height

The existing regulatory conditions as set by the 2003 UW Campus Master Plan cannot accommodate the total future needs identified in Section 2. Current zoning and shoreline regulations allow for only a total of approximately 5.2M gsf. This would require some functions to move outside of South Campus. Accommodating all of the estimated future program needs, without loss of critical functions, would require increased height allowances.

All development strategies explored in this section accommodate the total 6.8M gsf of future needs, assuming an upzone. This will allow for the projected growth, and the right-sizing and decompression of existing space to meet current needs required for every program. The total capacity of the upzoned scenario as shown here accommodates approximately 7.1M gsf.

Figure 80: Proposed Upzoning Building Height
A variety of strategies were explored to achieve the goals and accommodate constraints, givens, constants and assumptions. Each of the three strategies diagrammed focus on a range of approaches to edges, circulation, development patterns and character, using open space as the main variable. This allowed the team to fully explore the pros and cons of a range of attributes (see page 91). In all cases, the character envisioned follows the overall goals to provide a sense of place and a unique identity to South Campus as a setting for integral, collaborative and cohesive teaching, research and clinical activities, with strategic connections to the Central Campus, the UWMC, the waterfront and the community.

Each strategy was assessed for its effectiveness in supporting desired outcomes through the range of attributes. The strategies are intended to inform the refined scenario described in Section 5.

THREE STRATEGIES

<table>
<thead>
<tr>
<th>Character</th>
<th>maximize connections</th>
<th>centralized focus</th>
<th>waterfront focus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density</td>
<td>evenly distributed</td>
<td>emphasis on N-S axis</td>
<td>emphasis on Pacific St. and E-W axis</td>
</tr>
<tr>
<td>Open Space</td>
<td>decentralized</td>
<td>centralized</td>
<td>corridors</td>
</tr>
<tr>
<td>Edges and Entries</td>
<td>porous edges and multiple entries</td>
<td>less porous and centralized entries</td>
<td>less porous and centralized entries</td>
</tr>
<tr>
<td>Up-Zoning Benefits</td>
<td>reduced bulk</td>
<td>central space</td>
<td>widened waterfront</td>
</tr>
<tr>
<td>Waterfront Character</td>
<td>urban, constructed edge</td>
<td>park/constructed edge, passive recreation</td>
<td>major park, informal recreation</td>
</tr>
<tr>
<td>Block Typology</td>
<td>city block towers</td>
<td>north/south orientation</td>
<td>east/west orientation</td>
</tr>
<tr>
<td>NE Columbia Road</td>
<td>at grade</td>
<td>at grade service, parking below</td>
<td>below elevated park</td>
</tr>
<tr>
<td>NE Pacific Street</td>
<td>upper setback, no lid</td>
<td>at grade setback, no lid</td>
<td>upper setback, lid</td>
</tr>
<tr>
<td>Parking</td>
<td>decentralized, underground & at grade</td>
<td>centralized, underground</td>
<td>clustered, underground</td>
</tr>
<tr>
<td>Service / Loading</td>
<td>decentralized, at grade</td>
<td>clustered above grade access on Columbia</td>
<td>clustered underground</td>
</tr>
</tbody>
</table>

Table 08: Strategies
SECTION 05. RECOMMENDED PLAN

Figure 81: Recommended Plan Rendered View
SECTION 05. RECOMMENDED PLAN

Strategies Assessment

After developing the alternative strategies, successful attributes of each were incorporated into a hybrid scenario for further refinement, including phasing and cost.

Selected attributes studied in Section 4 were reviewed and assessed for support of the plan’s desired goals and guiding principles. Those that were thought to be most supportive are highlighted in orange and incorporated into a hybrid development scenario, the Recommended Plan.

The recommended plan most directly draws upon the Central Green and Open Shoreline strategies to facilitate collaborative opportunities between the Health Sciences programs, waterfront uses, connections to adjacent campus precincts, and a sense of place and unique identity to South Campus.

Figure 82: Recommended Plan Thumbnail

Table 09: Strategies Assessment

After developing the alternative strategies, successful attributes of each were incorporated into a hybrid scenario for further refinement, including phasing and cost.

Selected attributes studied in Section 4 were reviewed and assessed for support of the plan’s desired goals and guiding principles. Those that were thought to be most supportive are highlighted in orange and incorporated into a hybrid development scenario, the Recommended Plan.

The recommended plan most directly draws upon the Central Green and Open Shoreline strategies to facilitate collaborative opportunities between the Health Sciences programs, waterfront uses, connections to adjacent campus precincts, and a sense of place and unique identity to South Campus.
SOUTH CAMPUS VISION
The long term vision of South Campus (30+ years) supports growth of all programs, phased development with flexibility for funding, a unique identity, a sense of place internal to the buildings and external to the surrounding landscape, and strong connections within, to other campus areas and to the waterfront.

A sustainable and resilient area of intense growth and change over time, South Campus will be a research and teaching hub for collaborative inter-professional education of a world class standard.

CURRENT AND FUTURE
South Campus will see an incredible redevelopment over the next 30+ years. Many changes to the existing conditions are directly related to achieving the goals and objectives set forth in Section 2 including: expanded and enhanced open space, current and future space needs accommodated within South Campus, access to daylight, convenient access to daylight and views for every occupant. Connections to main campus are accentuated at ground level and to main campus are accentuated at ground level and bridging Pacific Street.

Figure 139: South Campus Before

Figure 140: South Campus After

(Developed Prior to Study of University of Washington Medical Center)
South Campus accommodates the need for proximity between the academic, research, and health care services. It is a tremendous asset to have these facilities in close location to the main campus, and it is even rarer to have this combination located on a spectacular urban waterfront. Taken together, South Campus has the capacity to offer a very high quality campus experience.

As density is increased, the Recommended Plan explores multiple strategies for meeting and exceeding existing character and quality.

The plan combines many ideas generated from planning alternative strategies. A greater north-south porosity and continuous east-west connections would help to improve orientation and wayfinding throughout South Campus. A generous waterfront connected to a central vista that itself offers a direct linkage to the central campus establishes a new level of connectivity that hasn’t existed before. Porosity along the waterfront parallels increased openness along NE Pacific Street.

The long-term vision of South Campus includes connected open space frameworks, increased capacity for development, and underground parking to allow for pedestrian and bicycle separation, visual and physical connections to West, Main and East Campus precincts, an activated waterfront for working and recreational uses, innovative facility infrastructure, and integration with the historic Olmstead plan.
SECTION 05. RECOMMENDED PLAN

AERIAL VIEW FROM WEST
This view from a different perspective, looks from West Campus towards Mt. Rainier and the Montlake neighborhood to the southeast. Connections from West Campus are enhanced by improved visibility, waterfront access and development, and open space network extensions.

Figure 142: Rendered Aerial from West

VIEW FROM WATERFRONT
The longest shoreline of any campus in the country, the University of Washington’s waterfront is especially unique. Envisioned is a dynamic and active waterfront beaking to the history of the coastline along Portage Bay, from the recreational aspects of sport activity on the water (rowing, diving, kayaking and paddle boarding) to the medicinal aspects beneficial to patients visiting the UW Medical Center. Views to and from the waterfront are enhanced and accentuated.

The 274’ Thomas G. Thompson research vessel and other boats stored adjacent to the Marine Sciences Building along the waterfront edge continue to operate as a commercial waterfront, allowing the UW research vessels to dock and load/unload equipment.

Figure 143: Rendered View from Waterfront
TOTAL SPACE ACCOMMODATED

<table>
<thead>
<tr>
<th>Existing SF</th>
<th>Existing GF</th>
<th>Total Removed</th>
<th>Future GF</th>
<th>Future SF</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>UW Programs/Departments</td>
<td>3,220,967</td>
<td>3,220,967</td>
<td>(2,928,837)</td>
<td>3,784,475</td>
<td>6,690,260</td>
</tr>
<tr>
<td>UW Medical Center</td>
<td>1,171,587</td>
<td>1,171,587</td>
<td>(2,830)</td>
<td>1,168,757</td>
<td>1,464,484</td>
</tr>
<tr>
<td>SOUTH CAMPUS TOTAL</td>
<td>3,394,475</td>
<td>3,394,475</td>
<td>(2,928,837)</td>
<td>3,784,475</td>
<td>6,690,260</td>
</tr>
</tbody>
</table>

SOUTH CAMPUS TOTAL

1. Does not equal totals above. "H Building Site" was counted in the capacity of both UW Programs/Departments and UW Medical Center as they are both potential occupiers of "H Building Site" and should not be double-counted in the South Campus total. Future occupant to be determined.

Table 02: South Campus Square Footage Totals

1. Does not equal totals above. "H Building Site" was counted in the capacity of both UW Programs/Departments and UW Medical Center as they are both potential occupiers of "H Building Site" and should not be double-counted in the South Campus total. Future occupant to be determined.

2. 65% Efficiency + 10% Contingency

3. 80% Efficiency

4. Per UW SIMS database; except School of Medicine which was provided by Miranda Leidich on 12/26/2014.

5. Highest range used for maximum need

OPEN SPACE CHARACTER

The envisioned character throughout South Campus varies to accommodate the dynamic culture, functionality, and connectivity of the Health Sciences district and adjacent areas. Each of the characteristics have unique qualities that can and should be incorporated into a larger framework of open spaces.

Figure 84: Open Space Character

The Recommended Plan would help integrate South Campus into the larger university landscape.
EDGES AND ACCESS
Historically, the result of the development along the south side of NE Pacific Street was deemed “the wall.” A goal of this study is to provide alternatives to the current conditions which includes a vehicular oriented corridor with a single narrow sidewalk, an impenetrable building mass, and pedestrian access limited to two narrow bridges over Pacific Street.

The concept shown in Figure 116 provides new multi-modal access points around South Campus, formed by a hierarchy of pathways located at grade and at existing bridge locations. The pedestrian through-pathways connect to the waterfront, along with transparent building facades and access from NE Pacific Street greatly increase the porosity of South Campus from the north and the south.

Waterfront access is also considered, providing visual and physical access to several areas, to different degrees.

CIRCULATION

Vehicular
Vehicular traffic is largely below grade in this plan, with access into a multi-building parking facility located close to campus entries. Service traffic would continue along the current alignment of NE Columbia Road (see Figure 121).

Pedestrian
The plan prioritizes pedestrian circulation, creating multiple landscape and architectural connections, both in the east-west and north-south directions. A major pathway from West Campus, entering through the Foege Hall breezeway, would lead to an enclosed connection linking several South Campus buildings, and providing visual and physical connections between NE Pacific Street and the Portage Bay waterfront.

Circulation along the waterfront would connect East Campus and West Campus, and provide multiple links into South Campus and up to Central Campus.

Bicycle
Bicycles would share low-use roadways with service vehicles, but also have access to the waterfront and the Burke-Gilman Trail along non-motorized vehicle routes that are wide enough to accommodate pedestrians and cyclists.
SECTION 05. RECOMMENDED PLAN

UNDERGROUND PARKING

South Campus is in urgent need of greater parking capacity. Any parking stalls removed with future development must be replaced in a nearby location so as not to disrupt operations.

When the S1 Parking Garage is replaced with underground parking (likely an early phase) a temporary solution will be required through the use of adjacent lots and/or a shuttle system. Upon full buildout of the plan, the total parking need identified in Section 2 will be accommodated with this plan.

South Campus is in urgent need of greater parking capacity. Any parking stalls removed with future development must be replaced in a nearby location so as not to disrupt operations. When the S1 Parking Garage is replaced with underground parking (likely an early phase), a temporary solution will be required through the use of adjacent lots and/or a shuttle system. Upon full buildout of the plan, the total parking need identified in Section 2 will be accommodated with this plan.

Critical functions within South Campus rely on the service and loading operations currently in place. These operations cannot be interrupted during construction.

Currently, 15 loading bays are consolidated at 3 Health Sciences docks with access from Columbia Road. A total of 15 bays is expected to accommodate the future needs of the Health Sciences programs. Access to all drop-off areas is above grade at centralized locations, separate from other vehicular traffic which is directed below grade into parking structures. These routes are consolidated along a reconfigured Columbia Road and pass through the central open space, sharing the corridor with pedestrian and bicycle traffic.

The loading bays are located at existing and new docks, including the ARCF, UWMC loading areas, and two new loading areas along the new access road connecting Columbia Road to Pacific Street. Distribution of goods will occur via a secondary distribution network of hand trucks or smaller equipment for transporting goods directly to programs.

The existing loading dock at the Marine Sciences building will remain, for critical loading related to the College of the Environment.

As mentioned, circulation for parking and service are separated and parking traffic is immediately directed below grade upon entering South Campus. The existing Gatehouse (GH1) would be relocated to the below grade parking entry to improve wayfinding to reduce congestion and separate cars from service vehicles. A new two-way access point is added near the existing intersection of NE Pacific Place and NE Pacific Street adjacent to the Montlake Triangle Garage.

Two below grade parking levels are assumed, along with 325 sf/stall.

Two below grade parking levels are assumed, along with 325 sf/stall.

Underground Parking
Parking Traffic
Service Traffic

Underground Parking
Parking Traffic
Service Traffic

STALL COUNT

<table>
<thead>
<tr>
<th>Phase 1</th>
<th>Phase 2</th>
<th>Phase 3</th>
<th>Phase 4</th>
<th>Phase 5</th>
<th>Phase 6</th>
<th>Phase 7</th>
<th>Phase 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>878</td>
<td>948</td>
<td>257</td>
<td>323</td>
<td>334</td>
<td>159</td>
<td>548</td>
<td>204</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>UWMC</td>
</tr>
<tr>
<td>605</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total New Stalls: 4,467

Underground Parking
Parking Traffic
Service Traffic

As mentioned, circulation for parking and service are separated and parking traffic is immediately directed below grade upon entering South Campus. The existing Gatehouse (GH1) would be relocated to the below grade parking entry to improve wayfinding to reduce congestion and separate cars from service vehicles. A new two-way access point is added near the existing intersection of NE Pacific Place and NE Pacific Street adjacent to the Montlake Triangle Garage.

Two below grade parking levels are assumed, along with 325 sf/stall.

Critical functions within South Campus rely on the service and loading operations currently in place. These operations cannot be interrupted during construction.

Currently, 15 loading bays are consolidated at 3 Health Sciences docks with access from Columbia Road. A total of 15 bays is expected to accommodate the future needs of the Health Sciences programs. Access to all drop-off areas is above grade at centralized locations, separate from other vehicular traffic which is directed below grade into parking structures. These routes are consolidated along a reconfigured Columbia Road and pass through the central open space, sharing the corridor with pedestrian and bicycle traffic.

The loading bays are located at existing and new docks, including the ARCF, UWMC loading areas, and two new loading areas along the new access road connecting Columbia Road to Pacific Street. Distribution of goods will occur via a secondary distribution network of hand trucks or smaller equipment for transporting goods directly to programs.

The existing loading dock at the Marine Sciences building will remain, for critical loading related to the College of the Environment.
SECTION 05. RECOMMENDED PLAN

SITE SECTIONS
The sections below compare current conditions with the future vision illustrating the increase in density and open space connectivity. Contiguous below grade parking allows for generous open space above and better organized circulation.

NE PACIFIC STREET
The current grade separation between South Campus buildings and NE Pacific Street, its widths and traffic volumes along NE Pacific Street, along with the configuration of South Campus buildings severely limit stronger connections between Central Campus and South Campus, as well as connections into South Campus from NE Pacific Street. This section shows the proposed bridge connecting to the new central open space.

Complex spatial relations should not be a barrier to meaningful connections across NE Pacific Street.

Figure 122: South Campus Functions Section

Figure 123: UWMC Site Section

Figure 124: NE Pacific Street Section
Changing the landscape context for NE Columbia Road will reduce its negative impact.

The waterfront can mix different types of landscape uses and program along with natural environments.

Expanding the width of the shoreline opens the door for different types of environments and accommodating the interests of different users, such as those passing through on bicycles and others heading towards the water’s edge to enjoy the view.

WATERFRONT

Changing the landscape context for NE Columbia Road will reduce its negative impact.

WATERFRONT

Expanding the width of the shoreline opens the door for different types of environments and accommodating the interests of different users, such as those passing through on bicycles and others heading towards the water’s edge to enjoy the view.
VIEW FROM NE COLUMBIA ROAD
The long term Vision removes privately owned vehicles from the ground plane and out of the pedestrian and bicycle realm along the waterfront. The proposed underground garage entry is integrated into the landscape to the east while the northern entry/exit provides access mid-block on NE Pacific Street. Columbia Road is now limited to service vehicles, pedestrians and bicyclists. Uninterrupted, it serves as the critical service circulation system for vehicles dedicated to the South Campus. Loading is consolidated to major docks at each end of the road, away from public circulation.

Development south of NE Columbia Road (per zoning regulations) remains stepped to allow for views to Portage Bay from adjacent buildings, and extends the open space network and circulation systems towards the open waterfront.

VIEW FROM BURKE-GILMAN TRAIL
Extensions of open space allow for views from the Burke-Gilman Trail through to Portage Bay, as well as opportunities for students, faculty and staff to safely and easily access the waterfront from central campus.
AERIAL VIEW ABOVE CENTRAL CAMPUS
Development along NE Pacific Street is envisioned as a porous and active urban edge, easily accessible from central campus. Setbacks are proposed at ground and upper levels to allow for articulation of the campus edge, visual interest, increased wayfinding, elevated occupiable open space, and ground level active uses. Building heights are sensitive to the daylighting needs of the Life Sciences Building greenhouses across NE Pacific Street.

AERIAL OF SOUTH CAMPUS, LOOKING NORTH
Waterfront circulation helps to orchestrate the uphill and downhill movements of South Campus and Central Campus users with individuals able to make longer regional trips along the waterfront, perhaps between East Campus and West Campus, or further.

AERIAL FROM SOUTHWEST
Showing the increase in open space along the shoreline and up the hill toward the Central Campus.
SECTION 05. RECOMMENDED PLAN

FOCUSED VIEWS

View To The South Along The Central Vista
Standing just north of the east-west spine that connects buildings to the east and west.

View To The South, From The Bridge Over NE Pacific Street
The bridge provides passage to the buildings and also to the landscape and NE Pacific Street below. Elevated views to the waterfront might also be available from this spot, depending on the height and opacity of the east-west spine.

A central open space extending across Pacific Street connects central campus to the Health Sciences, other UW academic programs, and the UW Medical Center along the existing pedestrian bridge location. The grand gesture opens views from main campus to the Portage Bay waterfront and beyond. An interior central spine intersecting this open space is intended to connect the buildings. The location, ground plane, and transparency of this structure should be taken into consideration to support enhancing and extending the proposed views out and through while providing contiguity through South Campus.

View To The East, Along The Shoreline
Topographic variety and the curvature of pathways contribute to a sense of interplay of parts. The wider expanses present opportunities to enhance plant community structure and introduce a diverse range of native and acclimated plant and tree species.

View To The South, Across Landscape Bowl, Toward The Waterfront
The sculpting of the topography in this location will relieve the flatness of the existing waterfront and create a comfortable, south-facing space for sitting and reading, or watching activity on the Portage Bay waterfront.

Looking South, Across Landscape Bowl, Toward The Waterfront
The sculpting of the topography in this location will relieve the flatness of the existing waterfront and create a comfortable, south-facing space for sitting and reading, or watching activity on the Portage Bay waterfront.

View To The East, Toward The Waterfront
Standing just north of the east-west spine that connects buildings to the east and west.

Figure 132: Central Vista View South
Figure 133: South View Toward Waterfront
Figure 134: View South from Bridge
Figure 135: Shoreline Towards East

UW South Campus Study
SECTION 05. RECOMMENDED PLAN

Looking East, Toward Montlake Boulevard
In addition to the existing pathway up to street level, which would be upgraded to accommodate a wider range of users, a new tunnel under Montlake Bridge provides connectivity to East Campus and beyond. To the right, but not visible, the existing inaccessible pedestrian connection remains.

NE Columbia Road, Looking East
Still providing service functions, but with most of the vehicular traffic moved below grade, NE Columbia Road is reconfigured to provide a more pedestrian and bicycle friendly campus environment.

Looking West, Along NE Pacific Street
In the vicinity of Rainier Vista, the campus woodland edge can provide a visual counterpoint to the new height and density being introduced to South Campus.
The waterfront works with other major landscape spaces running in a north-south direction, including San Juan Road, the Central Campus connection, and the Glade sculpture. A connection to East Campus is fostered through a short tunnel under the Montlake Bridge, a connection through the Foege breezeway leads to West Campus, and a new bridge to replace the existing T-Wing bridge across NE Pacific Street connects a mature landscape environment adjacent to W Stevens Way NE to the major new front entry into South Campus. NE Pacific Street is reconfigured to encourage pedestrian comfort and a lively urban frontage.

A major vista originates in the northern center of South Campus, transforming into a generously scaled informal green south of the NE Columbia Road corridor. Minor vistas flank this center to the east and west, establishing a sense of porosity along the waterfront that is similar to, but more generous than, the more city-scaled porosity introduced along the NE Pacific Street urban frontage.

Currently difficult relationships, such as those between Central and South Campus, and also between the waterfront and uphill academic and research program, are simpler to understand, but more complex and positive with respect to experience.

A connected and diverse mosaic of campus, urban, and waterfront landscape types.

Figure 86: Landscape Types

Figure 198: View of UWMC Expansion from Drumheller Fountain

UW Medical Center Expansion

The image below illustrates the effect of the proposed redevelopment with increased building height on the adjacent Rainier Vista. The resulting view from Drumheller Fountain and Red Square looking southeast to Mount Rainier should be studied further to protect the sacred open space from visual impediments.

(Developed Prior to Study of University of Washington Medical Center)
Complementary to the existing activities currently provided along Portage Bay, the Montlake Cut, Union Bay, and University Slough waterways, access to the waterfront of South Campus is necessary for academic research programs, recreation, leisure, and general health and wellness of students, faculty, staff and visitors of the University.

Flexible and accessible programming of this dynamic waterfront informs the types of uses and users. A continuous waterfront allows for multiple outdoor character options, and should not be reduced to only one type.

Figures 87 and 88 are examples of aspirational case studies with different characters possible for the South Campus waterfront.

The Portage Bay waterfront is a unique feature of University of Washington that is relatively inaccessible to the South Campus community and also relatively unknown to the campus as a whole. One of its current assets is its heterogeneity and mixture of park-like uses with research efforts. As its identity is developed in the future, multiple precedents can be explored that invite more public use.

There are many waterfront precedents that can be drawn on for South Campus.
SECTION 05. RECOMMENDED PLAN

The landscape can be a vital contributor to social vibrancy and the overall quality of life on campus. As buildings become larger and taller, there is even greater necessity to provide a robust landscape environment and study microclimatic conditions related to rain and wind to ensure user comfort.

Robust outdoor spaces support collaboration and social vibrancy on campus.

Planting has multiple functions on a campus, including both ecological and experiential benefits. Planting strategies for South Campus could include a range of seasonal highlights and potential programmatic uses.

Planting plays an important role in determining campus character.
Flexibility of use is important for campus landscapes. Spaces that can create meaningful experiences for solitary users as well as small groups and larger events, will be highly valued.

The landscape should be capable of meeting diverse social and emotional needs.

1. The crossing to Central Campus
2. The intersection of primary landscape and architectural corridors
3. A new landscape green at the water’s edge
4. A wetland garden that provides stormwater treatment

Detail studies of moments within the Recommended Plan.

(Developed Prior to Study of University of Washington Medical Center)
The crossing to Central Campus.

Landscape improvements can be made to the north and south side of NE Pacific Street to facilitate a new crossing that can lead Central Campus users down into the heart of South campus.

The north-south landscape continuity will be important to the future success of South Campus, as will the east-west architectural continuity. A variety of options should be explored to ensure that all needs are met and that important connections feel seamless, despite the complexity of their junction.

The intersection of primary landscape and architectural corridors.
The waterfront can be many things, rather than just one, by creating an upland landscape context that is varied and programmatically diverse. The architecture can support this central landscape green both through its form, and through ground level program and adjacencies.

A new landscape green at the water’s edge.

As part of a larger effort to improve campus-wide sustainability, the low-lying area in the vicinity of San Juan Road could be used to manage stormwater ecologically. A new system for conveyance and collection could be tied to a large wetland that cleanses stormwater before releasing it to Portage Bay.

A wetland garden that provides stormwater treatment.
VIEW OF PHASE 1 AND CENTRAL OPEN SPACE
The figure below shows a conceptual rendering of Building N, potentially one of the first buildings anticipated in the Recommended Plan. The eight story building (assuming a future increase in zoning height) is adjacent to the central open space axis that invites users to engage the waterfront and provides opportunity to collaborate externally. Considered an enabling project and phased initially to replace portions of the S1 Parking Garage and Harris Hydraulics Building, the building stands within the existing context of South Campus.

Its lower height provides views for subsequent phases and conveys a character of South Campus unlike anywhere else at the University of Washington.
HEALTH STRATEGIES

Several strategies are employed to work with the proposed increase in density, including the consolidation of open space within a hierarchical network, and providing more density in areas away from the waterfront, maximizing access to daylight and view limited floor plates, increasing open space at the ground level.

An examination of current versus new height limits shows that the full program cannot be met with current zoning. This program includes the critical need for proximity between the academic, research and healthcare services that make the South Campus.

Current Height Limits - 5.2M gsf

Some functions must move off South Campus

Under current regulatory limits, reviewed in Section 03, the maximum available development capacity is not be enough to accommodate all units. Figure 147 demonstrates the South Campus vision as it may stand under current regulatory restrictions.

If an increase in zoning height is not possible, the proposed vision will require some functions to move off South Campus. Considerations of alternative locations include potential West Campus development sites. Candidate functions would be those that have a lesser need to be adjacent to the Medical Center.

Upzoning - 6.7M gsf

All functions remain in South Campus

In order to accommodate all programs, including right-sizing and future growth, regulatory restrictions for height must be increased. Figure 148 shows hues of light orange where upzoning is required, the lightest hue represents a jump of two tiers of MIMP zoning heights. With increased heights, the team identified necessary setbacks on higher structures per the analysis reviewed in Section 04.
The consequence of increasing density within South Campus requires increasing open space respectively for an improved more comfortable and usable environment. The currently regulatory coverage as defined in the 2003 Campus Master Plan is very dense. The Recommended Plan hits the maximum coverage in each zone H3, and in other zones proposes less coverage (see Figure 145).

SUSTAINABILITY STRATEGIES

This section lists strategies that specifically help to reduce the university’s carbon footprint, energy/water use and stormwater runoff. See sections related to each topic for more detail beyond sustainability.

Landscape
- Manage stormwater ecologically through:
 - re-heat needs in the HVAC systems. This would include decoupled ventilation and cooling approaches, a strong emphasis on heat recovery, and increased use of strategies to set back airflow and temperature levels during unoccupied periods.
- Suggest the UW develop a set of regional high-performance standards specifically for the south campus relating to building materials, shell performance, etc.
- The integrated podium concept provides strong opportunities to address issues from an Eco-District approach by connecting synergistic loads and resources between buildings. Specific areas to address could be waste heat capture, wastewater capture and reuse and rainwater capture and reuse.
- The University currently has a water source right from Lake Union which is only partially used. There is a potential to integrate this capacity into the thermal systems for one or more buildings.
- The podium construction will represent the technical spaces and buildings should be developed with a strong focus on minimizing
- The technical spaces and buildings should be developed with a strong focus on minimizing
- The University has been moving toward
- Consider implementing an aerobic and/or hypoxic alternative wastewater solution that treats wastewater on-site. These systems use a series of vegetated wetlands that promote microorganism growth.
- Sanitary Sewer
- The university currently has a water source right from Lake Union which is only partially used. There is a potential to integrate this capacity into the thermal systems for one or more buildings.
- The podium construction will represent the technical spaces and buildings should be developed with a strong focus on minimizing
- The University has been moving toward
- Consider implementing an aerobic and/or hypoxic alternative wastewater solution that treats wastewater on-site. These systems use a series of vegetated wetlands that promote microorganism growth.
- Sanitary Sewer
- The university currently has a water source right from Lake Union which is only partially used. There is a potential to integrate this capacity into the thermal systems for one or more buildings.
- The podium construction will represent the technical spaces and buildings should be developed with a strong focus on minimizing
- The University has been moving toward
- Consider implementing an aerobic and/or hypoxic alternative wastewater solution that treats wastewater on-site. These systems use a series of vegetated wetlands that promote microorganism growth.
- Sanitary Sewer
- The university currently has a water source right from Lake Union which is only partially used. There is a potential to integrate this capacity into the thermal systems for one or more buildings.
- The podium construction will represent the technical spaces and buildings should be developed with a strong focus on minimizing
- The University has been moving toward
- Consider implementing an aerobic and/or hypoxic alternative wastewater solution that treats wastewater on-site. These systems use a series of vegetated wetlands that promote microorganism growth.
- Sanitary Sewer
- The university currently has a water source right from Lake Union which is only partially used. There is a potential to integrate this capacity into the thermal systems for one or more buildings.
- The podium construction will represent the technical spaces and buildings should be developed with a strong focus on minimizing
- The University has been moving toward
- Consider implementing an aerobic and/or hypoxic alternative wastewater solution that treats wastewater on-site. These systems use a series of vegetated wetlands that promote microorganism growth.
- Sanitary Sewer
- The university currently has a water source right from Lake Union which is only partially used. There is a potential to integrate this capacity into the thermal systems for one or more buildings.
- The podium construction will represent the technical spaces and buildings should be developed with a strong focus on minimizing
- The University has been moving toward
- Consider implementing an aerobic and/or hypoxic alternative wastewater solution that treats wastewater on-site. These systems use a series of vegetated wetlands that promote microorganism growth.
- Sanitary Sewer
- The university currently has a water source right from Lake Union which is only partially used. There is a potential to integrate this capacity into the thermal systems for one or more buildings.
- The podium construction will represent the technical spaces and buildings should be developed with a strong focus on minimizing
- The University has been moving toward
- Consider implementing an aerobic and/or hypoxic alternative wastewater solution that treats wastewater on-site. These systems use a series of vegetated wetlands that promote microorganism growth.
- Sanitary Sewer
- The university currently has a water source right from Lake Union which is only partially used. There is a potential to integrate this capacity into the thermal systems for one or more buildings.
- The podium construction will represent the technical spaces and buildings should be developed with a strong focus on minimizing
- The University has been moving toward
- Consider implementing an aerobic and/or hypoxic alternative wastewater solution that treats wastewater on-site. These systems use a series of vegetated wetlands that promote microorganism growth.
- Sanitary Sewer
- The university currently has a water source right from Lake Union which is only partially used. There is a potential to integrate this capacity into the thermal systems for one or more buildings.
- The podium construction will represent the technical spaces and buildings should be developed with a strong focus on minimizing
- The University has been moving toward
- Consider implementing an aerobic and/or hypoxic alternative wastewater solution that treats wastewater on-site. These systems use a series of vegetated wetlands that promote microorganism growth.
- Sanitary Sewer
- The university currently has a water source right from Lake Union which is only partially used. There is a potential to integrate this capacity into the thermal systems for one or more buildings.
- The podium construction will represent the technical spaces and buildings should be developed with a strong focus on minimizing
- The University has been moving toward
- Consider implementing an aerobic and/or hypoxic alternative wastewater solution that treats wastewater on-site. These systems use a series of vegetated wetlands that promote microorganism growth.
- Sanitary Sewer
- The university currently has a water source right from Lake Union which is only partially used. There is a potential to integrate this capacity into the thermal systems for one or more buildings.
- The podium construction will represent the technical spaces and buildings should be developed with a strong focus on minimizing
- The University has been moving toward
- Consider implementing an aerobic and/or hypoxic alternative wastewater solution that treats wastewater on-site. These systems use a series of vegetated wetlands that promote microorganism growth.
- Sanitary Sewer
- The university currently has a water source right from Lake Union which is only partially used. There is a potential to integrate this capacity into the thermal systems for one or more buildings.
- The podium construction will represent the technical spaces and buildings should be developed with a strong focus on minimizing
- The University has been moving toward
- Consider implementing an aerobic and/or hypoxic alternative wastewater solution that treats wastewater on-site. These systems use a series of vegetated wetlands that promote microorganism growth.
- Sanitary Sewer
- The university currently has a water source right from Lake Union which is only partially used. There is a potential to integrate this capacity into the thermal systems for one or more buildings.
- The podium construction will represent the technical spaces and buildings should be developed with a strong focus on minimizing
- The University has been moving toward
- Consider implementing an aerobic and/or hypoxic alternative wastewater solution that treats wastewater on-site. These systems use a series of vegetated wetlands that promote microorganism growth.
- Sanitary Sewer
- The university currently has a water source right from Lake Union which is only partially used. There is a potential to integrate this capacity into the thermal systems for one or more buildings.
- The podium construction will represent the technical spaces and buildings should be developed with a strong focus on minimizing
- The University has been moving toward
- Consider implementing an aerobic and/or hypoxic alternative wastewater solution that treats wastewater on-site. These systems use a series of vegetated wetlands that promote microorganism growth.
- Sanitary Sewer
- The university currently has a water source right from Lake Union which is only partially used. There is a potential to integrate this capacity into the thermal systems for one or more buildings.
- The podium construction will represent the technical spaces and buildings should be developed with a strong focus on minimizing
- The University has been moving toward
- Consider implementing an aerobic and/or hypoxic alternative wastewater solution that treats wastewater on-site. These systems use a series of vegetated wetlands that promote microorganism growth.
SECTION 05. RECOMMENDED PLAN

Infrastructure

Transportation Planning Context

South Campus sits at the crossroads of a dynamic area that is due for transformative land use and transportation infrastructure changes over the coming years. The region is making a massive investment in transit on South Campus’ doorstep with the construction of the University of Washington Link light rail station slated to open in 2016. This extension of Sound Transit’s existing light rail system will bring the northern terminus from Downtown Seattle to the University of Washington with an intermediate stop in Capitol Hill. The next phase of the northern extension, targeted for 2021, will bring light rail to the U District, Roosevelt, and Northgate. By 2023, light rail is planned to reach Lynnwood to the north, Bellevue and Redmond to the east, and Kent and Des Moines to the south.

This expansion of light rail will make South Campus more easily accessible by transit than ever before. The University of Washington station, just across Montlake Boulevard from South Campus will be an

Figure 149: Light Rail Station at UW Stadium

Figure 150: WSDOT Link Light Rail Expansion

Figure 151: WSDOT Planned Projects

Storm Drainage

Current City of Seattle code requires projects to implement Green Stormwater Infrastructure (GSI) to the maximum extent feasible. The University is committed to exploring and implementing GSI facilities as budgets allow and value can be measured economically, environmentally and educationally. Of course any proposed GSI strategy must be feasible from both an economic and maintenance standpoint and reviewed on a project-specific basis. Below is an outline of possible GSI strategies for South Campus.

- Bio-Retention Swales are an effective district-scaled strategy for treating stormwater runoff from large urban watershed basins. Alternatively, rain gardens or bio-retention planters could be added on a project-by-project basis to treat pollution generating areas. Bio-retention planters are currently limited to 5,000 square feet of impervious surface per cell.

- Green Roofs provide many benefits to the urban landscape, which include stormwater dispersion through evapo-transpiration (peak and volume flow control), bird habitat, mitigation of the heat island effect in urban areas, ultra-violet protection for roofing materials, and visual interest/diversity. Green roofs can be installed with new building development or by retrofitting existing roofs with plastic trays filled with soil and plants. The soil is an engineered lightweight soil with designed infiltration rates and the plant medium is typically a drought-resistant succulent, such as sedum.

- Typical impervious pavements increase peak stormwater volumes and pollutants by concentrating stormwater runoff. Pervious pavements, on the other hand, provide a more natural drainage environment by allowing stormwater to infiltrate as it falls on the pavement. Peak volumes are reduced because stormwater is dispersed within the pavement section and subgrade rather than concentrated and collected in catch basins. Pollutants are filtered and trapped within the pavement section and do not reach receiving waters or groundwater.

- Typical current applications of porous pavements are parking lots, low volume access drives, and sidewalks. Pervious pavement materials include concrete, asphalt, and concrete unit pavers. Pervious asphalt looks similar to typical asphalt pavement, whereas porous concrete looks significantly different than typical brown finish concrete surfaces.

- Porous pavements can be used regardless of low subgrade permeability, such as glacial till soils common at the University. Strategically placed perforated drain pipe can relieve infrequent saturated conditions while allowing runoff to infiltrate during most storm events.

- Porous pavements require cleaning with a street sweeper equipped with a suction vacuum. Pervious asphalt requires more frequent cleaning than porous concrete.
connection between the two. This bridge would connect to the main sidewalk leading to the waterfront green area.I-5 Center, the main roadway through South Campus.

The proposed pedestrian and bicycle network provides more paths to be traveled by foot and by bike, improving connectivity between facilities as well as route directness. Incorporating a grid pattern allows for the anticipated, improving circulation for pedestrians and bicycles compared to the existing limitations and loops created by NE Pacific Street

The proposed pathways and atrium would provide separation from the freight and loading operations taking place along NE Columbia Road, the main roadway through South Campus.

Subsequent phases would continue to expand the new roadway to NE Pacific Street which would become the main vista leading to the waterfront green area. The revisions to auto and truck circulation will provide an opportunity to reevaluate and simplify the wayfinding system. In particular, the new signage will provide a more seamless transition for South Campus users.

The geography and topography surrounding South Campus limit connectivity to nearby neighborhoods and the UW Main Campus. The proposed development scenario includes improvements to access and circulation for pedestrians, bicyclists, and autos.

The geography and topography surrounding South Campus limit connectivity to nearby neighborhoods and the UW Main Campus. The proposed development scenario includes improvements to access and circulation for pedestrians, bicyclists, and autos.

Pedestrian and Bicycle Circulation

NE Pacific Street currently acts as a barrier between the Main Campus and South Campus—i.e., the proposed bridge across NE Pacific Street (replacing the existing T Wing rampway) would provide a more seamless connection between the two. This bridge would connect to the main sidewalk leading to the waterfront green area. The proposed pathways and atrium would provide separation from the freight and loading operations taking place along NE Columbia Road, the main roadway through South Campus.

The geography and topography surrounding South Campus limit connectivity to nearby neighborhoods and the UW Main Campus. The proposed development scenario includes improvements to access and circulation for pedestrians, bicyclists, and autos.

Pedestrian and Bicycle Circulation

NE Pacific Street currently acts as a barrier between the Main Campus and South Campus—the proposed bridge across NE Pacific Street (replacing the existing T Wing rampway) would provide a more seamless connection between the two. This bridge would connect to the main sidewalk leading to the waterfront green area.

The proposed pathways and atrium would provide separation from the freight and loading operations taking place along NE Columbia Road, the main roadway through South Campus.

The geography and topography surrounding South Campus limit connectivity to nearby neighborhoods and the UW Main Campus. The proposed development scenario includes improvements to access and circulation for pedestrians, bicyclists, and autos.

Pedestrian and Bicycle Circulation

NE Pacific Street currently acts as a barrier between the Main Campus and South Campus—i.e., the proposed bridge across NE Pacific Street (replacing the existing T Wing rampway) would provide a more seamless connection between the two. This bridge would connect to the main sidewalk leading to the waterfront green area. The proposed pathways and atrium would provide separation from the freight and loading operations taking place along NE Columbia Road, the main roadway through South Campus.

The geography and topography surrounding South Campus limit connectivity to nearby neighborhoods and the UW Main Campus. The proposed development scenario includes improvements to access and circulation for pedestrians, bicyclists, and autos.

Pedestrian and Bicycle Circulation

NE Pacific Street currently acts as a barrier between the Main Campus and South Campus—i.e., the proposed bridge across NE Pacific Street (replacing the existing T Wing rampway) would provide a more seamless connection between the two. This bridge would connect to the main sidewalk leading to the waterfront green area. The proposed pathways and atrium would provide separation from the freight and loading operations taking place along NE Columbia Road, the main roadway through South Campus.

The geography and topography surrounding South Campus limit connectivity to nearby neighborhoods and the UW Main Campus. The proposed development scenario includes improvements to access and circulation for pedestrians, bicyclists, and autos.

Pedestrian and Bicycle Circulation

NE Pacific Street currently acts as a barrier between the Main Campus and South Campus—i.e., the proposed bridge across NE Pacific Street (replacing the existing T Wing rampway) would provide a more seamless connection between the two. This bridge would connect to the main sidewalk leading to the waterfront green area. The proposed pathways and atrium would provide separation from the freight and loading operations taking place along NE Columbia Road, the main roadway through South Campus.

The geography and topography surrounding South Campus limit connectivity to nearby neighborhoods and the UW Main Campus. The proposed development scenario includes improvements to access and circulation for pedestrians, bicyclists, and autos.

Pedestrian and Bicycle Circulation

NE Pacific Street currently acts as a barrier between the Main Campus and South Campus—i.e., the proposed bridge across NE Pacific Street (replacing the existing T Wing rampway) would provide a more seamless connection between the two. This bridge would connect to the main sidewalk leading to the waterfront green area. The proposed pathways and atrium would provide separation from the freight and loading operations taking place along NE Columbia Road, the main roadway through South Campus.

The geography and topography surrounding South Campus limit connectivity to nearby neighborhoods and the UW Main Campus. The proposed development scenario includes improvements to access and circulation for pedestrians, bicyclists, and autos.

Pedestrian and Bicycle Circulation

NE Pacific Street currently acts as a barrier between the Main Campus and South Campus—i.e., the proposed bridge across NE Pacific Street (replacing the existing T Wing rampway) would provide a more seamless connection between the two. This bridge would connect to the main sidewalk leading to the waterfront green area. The proposed pathways and atrium would provide separation from the freight and loading operations taking place along NE Columbia Road, the main roadway through South Campus.

The geography and topography surrounding South Campus limit connectivity to nearby neighborhoods and the UW Main Campus. The proposed development scenario includes improvements to access and circulation for pedestrians, bicyclists, and autos.

Pedestrian and Bicycle Circulation

NE Pacific Street currently acts as a barrier between the Main Campus and South Campus—i.e., the proposed bridge across NE Pacific Street (replacing the existing T Wing rampway) would provide a more seamless connection between the two. This bridge would connect to the main sidewalk leading to the waterfront green area. The proposed pathways and atrium would provide separation from the freight and loading operations taking place along NE Columbia Road, the main roadway through South Campus.

The geography and topography surrounding South Campus limit connectivity to nearby neighborhoods and the UW Main Campus. The proposed development scenario includes improvements to access and circulation for pedestrians, bicyclists, and autos.

Pedestrian and Bicycle Circulation

NE Pacific Street currently acts as a barrier between the Main Campus and South Campus—i.e., the proposed bridge across NE Pacific Street (replacing the existing T Wing rampway) would provide a more seamless connection between the two. This bridge would connect to the main sidewalk leading to the waterfront green area. The proposed pathways and atrium would provide separation from the freight and loading operations taking place along NE Columbia Road, the main roadway through South Campus.

The geography and topography surrounding South Campus limit connectivity to nearby neighborhoods and the UW Main Campus. The proposed development scenario includes improvements to access and circulation for pedestrians, bicyclists, and autos.
After 50 years of steady growth, nationwide vehicle trends are discussed here. During this time frame, several of these potential substantial changes to travel behavior and technology were observed. The redevelopment of South Campus will occur over three decades—it is possible that there could be unexpected changes to travel behavior and technology as phasing occurs. The final tunnel configuration will be highly dependent on the actual phasing of the buildings and platforms. As construction continues, the end of estimated parking need would be reached by Phase 5. As stated earlier, the current construction phasing allows for more parking spaces than are likely required (note the estimate does not include UMMA Phase). As construction continues, the University has done an excellent job of determining the optimal number of spaces (see Section 05 for phasing). Parking Demand Management The University has done an excellent job of incorporating travel demand management (TDM) principles into campus life, including programs such as UPResk, Zima, Commute Concierge, Pronto BikeShare, and UW shuttle services. While transit use among students, staff, and faculty is already at high levels, the upcoming improvements to nearby transit infrastructure and operations are expected to bring the transit rate even higher. Likewise, pedestrian and bicycle travel is expected to increase as improvements to the Burke-Gilman Trail, Montlake Bridge, and U District are made over the coming years. The new network will integrate with the existing campus network through new and existing tunnel nodes at the perimeter of the South Campus. Drawing C4-1 (Appendix J) provides a conceptual layout of the extended campus tunnel system. This system will continue to serve the South Campus to provide comfort heat and hot water production. This system will continue to serve the South Campus area through the proposed future development. Adequate capacity exists in the steam production equipment at the Power Plant to support the current and forecasted demand. Adequate capacity exists in the steam production equipment at the Power Plant to support the current and forecasted demand. Adequate capacity exists in the steam production equipment at the Power Plant to support the current and forecasted demand. Adequate capacity exists in the steam production equipment at the Power Plant to support the current and forecasted demand. Adequate capacity exists in the steam production equipment at the Power Plant to support the current and forecasted demand.
anticipated net growth in South Campus. There are existing bottlenecks in the campus steam distribution system that affect multiple areas on the campus and may affect the south campus at some point during its growth. The costs of addressing these bottlenecks is assumed to be a campus level issue and has therefore not been included in the cost estimates for this scenario.

Additional capacity will be required at the WCUP (lander to the Power Plant) to support the anticipated net growth in South Campus. (Costs for these additional chillers and associated equipment have not been included in the cost estimates).

Modifications to the CCW systems in South Campus are anticipated consistent with the tunnel revisions as described above. The piping costs for the Phase 1 revisions have been included in the cost estimates.

Petable Water

The existing petable water main distribution grid should be maintained or upgraded as South Campus is developed. Similar to the existing condition, piping within City right-of-way is owned and maintained by SPU; all other water infrastructure is owned and maintained by the University.

As each phase is developed, basic civil utility infrastructure will require investment to replace old piping or reroute and expand piping due to redevelopment in the area. The proposed below-grade parking structures will require a significant amount of storm drainage rerouting. Any time old clay pipe (pre-1965) is encountered, it should be replaced and upgraded to current standards. Refer to C2-1 for the Hybrid Scenarios Utility Base Map – Storm Drainage for schematic final build out scenario and proposed location for a regional water quality system.

The UW owns approximately twenty stormwater outfalls, six of those are located in South Campus as shown in C3-1. The existing storm drainage outfalls; six of those are located in South Campus; a 12-inch Master Meter at the corner of NE Pacific St. and NE Columbia Rd., Feeders WD-7 and WE-7 generally serve buildings sited between NE Columbia Rd. and the waterfront. In addition feeders WA-1, WB-1 and WC-1 generally serve the existing buildings sited between NE Pacific St. and NE Columbia Rd. as well as the existing systems of feeders in the area between NE Columbia Rd. and the waterfront. The overall capacity of the West Receiving Station is nearing its limit and should be evaluated in light of anticipated development in the South and West Campus.

Normal power in the areas affected by South Campus development is derived from a series of feeders which are connected to Seattle City Light through the West Receiving Station. Feeders WA-1, WB-1 and WC-1 generally serve buildings sited between NE Columbia Rd. and the waterfront. The existing systems of feeders in the area between NE Columbia Rd. and the waterfront are adequate to serve development in this area if no critical loads (i.e. those associated with vivaria, critical lab function, etc.) are anticipated in this area. If critical loads are
anticipated the routing of an additional feeder is rec-
ommended to support the implementation of a spot network connection for these buildings consistent with the approach taken elsewhere on the campus. New and extended feeders will be routed in the new tunnels described above. As the detailed phasing of the tunnels and associ-
ated feeders is developed some temporary feeders may need to be installed to ensure that adequate and reliable connections are maintained to all areas of the South Campus. Particular attention will need to be paid to the three feeders serving the Medical Center as they are routed from the West receiving station through Maxwell ST-4 and the T Wing Corridor which are slated for demolition and rebuit at some point in the South Campus Development process.

Steady / Emergency Power

Standby and Emergency power feeders GE-10 and GD-7 currently serve the area impacted by the pro-
posed South Campus development. GE-10 serves buildings sited between NE Pacific St. and NE Columbia Rd., feeder GE-7 generally serves buildings sited between NE Columbia Rd. and the waterfront. These feeders are currently served from generating systems located in the Power Plant, however by the time construction begins in South Campus these feeders will be transferred to the new generating capacity being developed in the WCUP. Particular attention will need to be paid to the three feeders serving the Medical Center as they are routed from the West receiving station through Maxwell ST-4 and the T Wing Corridor which are slated for demolition and rebuit at some point in the South Campus Development process. As the South Campus is developed and the tunnel system is modified as described above these IT and Low Voltage systems will need to be modified to support the new layouts. Temporary routings may be required of some systems depending on the actual phasing. Consideration should be given to development of the system routings to support the new layouts. The buildings in the South Campus will rely on the new and extended feeders to support their primary thermal, electrical and technology needs. Specific building level systems will need to be developed to serve the specific needs of the programs they will support. These include academic classrooms, professional education, medical research and bio-medical research along with their attendant support and office spaces. These programs represent diverse uses with some highly intensive from a utility standpoint and others less so. As these systems are developed it is recommended that the following issues are considered:

- The orientation of the proposed building sites in the South Campus will tend to have larger exposures facing the southeast and northwest. Energy use and comfort can be improved by careful consideration of which programs are placed in which exposure.
- The University has been moving toward increased use of natural ventilation in offices and non-technical spaces. This South Campus will provide many opportunities for this given its location and proximity to the lake.
- The technical spaces and buildings should be developed with a strong focus on maximizing re-
heat needs in the HVAC systems. This would include the use of decoupled ventilation and cooling approaches, to a strong emphasis on heat recovery, and increased use of strategies to set back airflow and temperature levels during unoccupied periods.
- In buildings with critical operations the electrical power connection should utilize a spot network configuration to increase reliability and allow for maintenance to occur without impacting building operations.
- These buildings will require a robust set of technology systems both for data connectivity and IT/IoT/other critical systems. They should include the pathways and spaces necessary to support a variety of rapidly changing technologies over their lifetimes.

NATURAL GAS

Given that gas service in South Campus is primarily used to supply various appliances and it is not typi-
cally used for heating, remote buildings could use off-line propane tanks if natural gas line extensions are not desired.
SECTION 06.
SOUTH CAMPUS FUNCTIONS: PHASING AND IMPLEMENTATION
This section explores a growth-oriented phasing scenario for full build-out of the South Campus plan. As it is impossible to predict actual phasing, with funding often unknown and program needs continually evolving, this study is seen as a “test” to ensure the plan is feasible.

The phasing strategy described in the pages to follow is one of many possible development scenarios that would allow for implementation of the long-term vision. Phasing includes programmatic “chess-moves” of major functions along with phased underground parking, waterfront and roadway improvements, and improvements to NE Columbia Road. Ultimately, the phased development in this “test” assumes one single move for every unit to a permanent location as phasing occurs. Any future planning efforts should recognize this study as a working tool for selecting sites that can catalyze the planned outcome described in Section 05.

Detailed analysis of the phasing of infrastructure is reviewed further in this section. Each of the 11 phases includes two steps: (1) construction of a surge space with below-grade parking and site improvements, and (2) programs move to new space and vacate existing space completely, allowing for removal of the existing facility. By the final phase, Phase 11, all of the 6.7M gsf of program has been relocated into permanent space within South Campus, with critical adjacencies addressed per the needs assessment in Section 02.

NEAR-TERM PROJECTS
Buildings M, N, and P
Initial building infill sites, that do not require demolition of existing buildings, include the S1 parking garage where a significant amount of infill development can occur without disruption of critical services.

Of the three sites, buildings N and P are considered to have the most potential to replace and expand parking and accommodate square footage. These also have the most potential to frame the central open space. Building M is an important step to complete permanent access to the initial below-grade parking structure between Ocean Sciences and Ocean Teaching Buildings. Once this occurs, all parking access for visitors, faculty and staff will be separated from service vehicles, which will continue use of NE Columbia Road.

Cost Estimation
Near-term development costs were estimated by Roen Associates for Phase One, and included detailed analysis of the potential near term building sites M, N, and P. See Appendix G for preliminary breakdown of costs.

Over the course of the plan, T Wing is divided, removed and replaced by thirds. Conceptual phasing begins with development on the S1 parking garage, establishing the initial framework for the connector the connector linking the campus to the new open space along the waterfront. Subsequent phases work toward a connection to Main Campus, followed by an outlet to Pacific Street, and finally the establishment of a permanent waterfront connection and improved shoreline.

“New” parking stall counts only include stalls that are accessible in each phase.

Any future planning efforts should recognize this study as a working tool for selecting sites that can catalyze the planned outcome described in Section 05.

Detailed analysis of the phasing of infrastructure is reviewed further in this section. Each of the 11 phases includes two steps: (1) construction of a surge space with below-grade parking and site improvements, (2) programs move to new space and vacate existing space completely, allowing for removal of the existing facility. By the final phase, Phase 11, all of the 6.7M gsf of program has been relocated into permanent space within South Campus, with critical adjacencies addressed per the needs assessment in Section 02.

NEAR-TERM PROJECTS
Buildings M, N, and P
Initial building infill sites, that do not require demolition of existing buildings, include the S1 parking garage where a significant amount of infill development can occur without disruption of critical services.

Of the three sites, buildings N and P are considered to have the most potential to replace and expand parking and accommodate square footage. These also have the most potential to frame the central open space. Building M is an important step to complete permanent access to the initial below-grade parking structure between Ocean Sciences and Ocean Teaching Buildings. Once this occurs, all parking access for visitors, faculty and staff will be separated from service vehicles, which will continue use of NE Columbia Road.

Cost Estimation
Near-term development costs were estimated by Roen Associates for Phase One, and included detailed analysis of the potential near term building sites M, N, and P. See Appendix G for preliminary breakdown of costs.
SECTION 06. PHASING AND IMPLEMENTATION

EXISTING
• Existing South Campus with 4.3M gsf building program and 956 parking stalls (UWMC Surgery Pavilions parking not included).

<table>
<thead>
<tr>
<th>BUILDING PROGRAM</th>
<th>PARKING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demolition</td>
<td>0M gsf</td>
</tr>
<tr>
<td>New</td>
<td>4.3M gsf</td>
</tr>
<tr>
<td>Total</td>
<td>4.3M gsf</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BUILDING PROGRAM</th>
<th>PARKING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demolition</td>
<td>556 stalls</td>
</tr>
<tr>
<td>New</td>
<td>0 stalls</td>
</tr>
<tr>
<td>Total</td>
<td>556 stalls</td>
</tr>
</tbody>
</table>

PHASE 1
• Phase 1 includes infill sites only. Demolition of existing buildings is not required.
• Replace S1, S5 and S12 parking.
• Establish underground parking.
• Improve NE Columbia Road to be more pedestrian friendly.
• Improve pedestrian connection to South Campus Center.
• 1,049 parking stalls are built, but only 878 stalls are accessible.

<table>
<thead>
<tr>
<th>BUILDING PROGRAM</th>
<th>PARKING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demolition</td>
<td>0M gsf</td>
</tr>
<tr>
<td>New</td>
<td>1.2M gsf</td>
</tr>
<tr>
<td>Total</td>
<td>1.2M gsf</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BUILDING PROGRAM</th>
<th>PARKING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demolition</td>
<td>890 stalls</td>
</tr>
<tr>
<td>New</td>
<td>878 stalls</td>
</tr>
<tr>
<td>Total</td>
<td>878 stalls</td>
</tr>
</tbody>
</table>

PHASE 2
• Phase 2 includes infill sites only. Demolition of existing buildings is not required.
• Replace S5 and S12 parking.
• Establish underground parking.
• Improve pedestrian connection to South Campus Center.
• 1,049 parking stalls are built, but only 878 stalls are accessible.

<table>
<thead>
<tr>
<th>BUILDING PROGRAM</th>
<th>PARKING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demolition</td>
<td>0M gsf</td>
</tr>
<tr>
<td>New</td>
<td>351,000 gsf</td>
</tr>
<tr>
<td>Total</td>
<td>351,000 gsf</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BUILDING PROGRAM</th>
<th>PARKING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demolition</td>
<td>238,000 stalls</td>
</tr>
<tr>
<td>New</td>
<td>238,000 stalls</td>
</tr>
<tr>
<td>Total</td>
<td>238,000 stalls</td>
</tr>
</tbody>
</table>

SECTION 06. PHASING AND IMPLEMENTATION
SECTION 06. PHASING AND IMPLEMENTATION

PHASE 2A
• Demolition of F Wing, D Wing, and B Wing.

UNITS AFFECTED
Health Sciences Administration
School of Dentistry
School of Medicine
School of Public Health

UNIT PROGRAM
Demolition 0.4M gsf

PARKING
0 stalls

PHASE 2B
• Replace F Wing, D Wing, and B Wing.
• Establish major north-south connection to South Campus Center.
• Widen and improve NE Columbia Road.
• Begin to establish new vehicular outlet to NE Pacific Street.
• Expand underground parking from Phase 1.

BUILDING PROGRAM
Demolition 0.4M gsf
New 0.8M gsf
Net 0.4M gsf
Total 5.9M gsf

PARKING
0 stalls
948 stalls
948 stalls
1,892 stalls

BUILDING PROGRAM
Demolition 0.4M gsf
New 0.8M gsf
Net 0.4M gsf
Total 5.9M gsf

PARKING
0 stalls
948 stalls
948 stalls
1,892 stalls
SECTION 06. PHASING AND IMPLEMENTATION

PHASE 3A
- Demolition of the central portion of T Wing.

UNITS AFFECTED
Health Sciences Administration
School of Medicine
School of Nursing
School of Public Health

BUILDING PROGRAM
Demolition 0.3M gsf

PARKING
Demolition 0 stalls

PHASE 3B
- Replace central portion of T Wing.
- Establish major north-south connection to Main Campus. Replace and recreate pedestrian bridge crossing above NE Pacific Street.
- Improve existing changes and connections between W Stevens Way, NE Burke-Gilman Trail, NE Pacific Street, and the pedestrian bridge.
- Begin to establish east-west spine.
- Improve pedestrian and edge conditions along NE Pacific Street.
- Expand underground parking from previous phases.

BUILDING PROGRAM
Demolition 0.3M gsf
New 0.3M gsf
Net 0M gsf
Total 5.9M gsf

PARKING
Demolition 0 stalls
New 297 stalls
Net 297 stalls
Total 2,189 stalls

UNITS AFFECTED
Health Sciences Administration
School of Medicine
School of Nursing
School of Public Health

BUILDING PROGRAM
Demolition 315,000 gsf

PARKING
Demolition 0 stalls
New 297 stalls
Net 297 stalls
Total 2,189 stalls

BUILDING PROGRAM
Demolition 315,000 gsf
New 315,000 gsf
Net 0M gsf
Total 315,000 gsf

PARKING
Demolition 0 stalls
New 297 stalls
Net 297 stalls
Total 2,189 stalls
SECTION 06. PHASING AND IMPLEMENTATION

PHASE 4A
- Demolition of A Wing, C Wing, and the east portions of T Wing.

UNITS AFFECTED
Health Sciences Administration
School of Nursing

BUILDING PROGRAM
Demolition 0.3M gsf

PARKING
0 stalls

PHASE 4B
- Replace A Wing, C Wing and the east portion of T Wing.
- Complete vehicular safety to NE Pacific Street.
- Continue to improve pedestrian and edge conditions along NE Pacific Street.
- Expand east-west spine.
- Expand underground parking from previous phases. 171 parking stalls under Building H (Phase 1) is now accessible.

BUILDING PROGRAM
Demolition 0.3M gsf
New 0.4M gsf
Net 0.1M gsf
Total 6.0M gsf

PARKING
0 stalls
494 stalls
494 stalls
2,683 stalls

Building G 359,000 gsf

Figure 164: Phase 4A

Figure 165: Phase 4B
SECTION 06. PHASING AND IMPLEMENTATION

PHASE 5A
- Demolition of BB Wing, RR Wing, and UWMC SW Wing.

UNITs AFFECTED
Center on Human Development and Disability
Food Services
Health Sciences Administration
School of Medicine
University of Washington Medical Center

BUILDING PROGRAM
 Demolition 0.4M gsf

PARKING
 0 stalls

PHASE 5B
- Replace BB Wing, RR Wing, and UWMC SW Wing.
- Complete widening and improving NE Columbia Road.
- Expand underground parking from previous phases.
- Establish second entrance to underground parking.

BUILDING PROGRAM
 Demolition 0.4M gsf
 New 0.5M gsf
 Net 0.1M gsf
 Total 6.1M gsf

PARKING
 0 stalls
 334 stalls
 334 stalls
 3,017 stalls

504,000 gsf

Building L

156 UW South Campus Study
(Developed Prior to Study of University of Washington Medical Center)

157 UW South Campus Study
(Developed Prior to Study of University of Washington Medical Center)
UNITS AFFECTED
Applied Physics Lab
College of the Environment
Health Sciences Administration
School of Nursing
School of Pharmacy

BUILDING PROGRAM
Demolition 0.1M gsf

PARKING
53 stalls

PHASE 6A
• Demolition of South Campus Center, Oceanography Building and Oceanography Dock Building.
• Demolition of S7 and S8 parking.

PHASE 6B
• Complete major north-south connection between Main Campus, South Campus and the waterfront.
• Restore and improve the waterfront.

UNITED STATES OF AMERICA
DISTRICT OF COLUMBIA

PHASE 6A

BUILDING PROGRAM
Demolition 0.1M gsf
New 0.0M gsf
Net -0.1M gsf

PARKING
53 stalls
0 stalls
-53 stalls

TOTAL
6.0M gsf
2,964 stalls

SECTION 06. PHASING AND IMPLEMENTATION

(Developed Prior to Study of University of Washington Medical Center)
SECTION 06. PHASING AND IMPLEMENTATION

PHASE 7A
- Phase 7A requires demolition of
 Green Teaching Building, Harris
 Hydraulic Laboratory, and a
 portion of Portage Bay Building.
- Demolish SE parking.

PHASE 7B
- Replace Green Teaching Building,
 Harris Hydraulic Laboratory, and a
 portion of Portage Bay Building.
- Continue to restore and
 improve the waterfront.

EXISTING BUILDING
- Building Demolition
- Existing Surface Parking

NEW PERMANENT LANDSCAPE
- New Permanent Landscape from
 Current Phase
- New Permanent Landscape from
 Previous Phases

NEW BUILDING
- New Building from
 Current Phase
- New Building from
 Previous Phases

NEW UNDERGROUND PARKING
- New Underground Parking

UNITS AFFECTED
- Applied Physics Lab
- Center on Human Development
 and Disability
- College of Engineering
- College of the Environment
- School of Medicine

BUILDING PROGRAM

<table>
<thead>
<tr>
<th>PHASE</th>
<th>BUILDING PROGRAM</th>
<th>PARKING</th>
</tr>
</thead>
<tbody>
<tr>
<td>7A</td>
<td>0.2M gsf</td>
<td>9 stalls</td>
</tr>
<tr>
<td>7B</td>
<td>0.1M gsf</td>
<td>9 stalls</td>
</tr>
<tr>
<td>7A+B</td>
<td>0.3M gsf</td>
<td>0 stalls</td>
</tr>
<tr>
<td>7A+B</td>
<td>6.1M gsf</td>
<td>2,955 stalls</td>
</tr>
</tbody>
</table>

PARKING

<table>
<thead>
<tr>
<th>PHASE</th>
<th>BUILDING PROGRAM</th>
<th>PARKING</th>
</tr>
</thead>
<tbody>
<tr>
<td>7A</td>
<td>0.2M gsf</td>
<td>9 stalls</td>
</tr>
<tr>
<td>7B</td>
<td>0.1M gsf</td>
<td>- 9 stalls</td>
</tr>
<tr>
<td>7A+B</td>
<td>0.3M gsf</td>
<td>0 stalls</td>
</tr>
<tr>
<td>7A+B</td>
<td>6.1M gsf</td>
<td>2,955 stalls</td>
</tr>
</tbody>
</table>
SECTION 06. PHASING AND IMPLEMENTATION

PHASE 8A
- Demolition of Hitchcock Hall.

UNITS AFFECTED
College of Arts and Sciences
School of Medicine

BUILDING PROGRAM
Demolition 0.1M gsf

PARKING
0 stalls

PHASE 8B
- Replace Hitchcock Hall.
- Improve pedestrian and edge conditions along NE Pacific Street.
- Expand east-west spine.
- 159 new parking stalls are built under Building C, but they are not accessible until phase 11.

BUILDING PROGRAM
Demolition 0.1M gsf
New 0.3M gsf
Net 0.2M gsf
Total 6.3M gsf

PARKING
0 stalls

Figure 172: Phase 8A

Figure 173: Phase 8B

Building C 310,000 gsf
SECTION 06. PHASING AND IMPLEMENTATION

PHASE 9A
- Demolition of Center on Human Development and Disability Clinic, Center on Human Development Disability South, and Center on Human Development and Disability School.
- Demolish SS parking.

UNITS AFFECTED
- CHDD
- College of Education
- School of Nursing
- School of Medicine

BUILDING PROGRAM

Demolition 0.1M gsf

PARKING

4 stalls

PHASE 9B
- Replace Center on Human Development and Disability Clinic, Center on Human Development Disability South, and Center on Human Development and Disability School.
- Enhance pedestrian and bicycle connections to the East of South Campus.
- Continue to restore and improve the waterfront.

Building R 391,000 gsf
Building S 22,000 gsf

BUILDING PROGRAM

Demolition 0.1M gsf
New 0.4M gsf
Net 0.3M gsf
Total 6.6M gsf

PARKING

4 stalls
- 4 stalls
- 4 stalls
- 2,951 stalls
SECTION 06. PHASING AND IMPLEMENTATION

UNITS AFFECTED
- Food Services
- Health Sciences Administration
- School of Dentistry
- School of Medicine
- School of Public Health

BUILDING PROGRAM

PHASE 10A
- Demolition of I Wing, G Wing, and the west portion of T Wing.

PHASE 10B
- Replace I Wing, G Wing, and the west portion of T Wing.
- Improve pedestrian and edge conditions along NE Pacific Street.
- Expand East-West spine.

BUILDING PROGRAM
- New Building from Current Phase
- New Building from Previous Phases
- New Underground Parking
- New Permanent Landscape from Current Phase
- New Permanent Landscape from Previous Phases
- New Temporary Landscape from Previous Phases

BUILDING PROGRAM
- Existing Building
- Demolition
- New Building from Current Phase
- New Building from Previous Phases
- New Underground Parking
- New Permanent Landscape from Current Phase
- New Permanent Landscape from Previous Phases
- New Temporary Landscape from Previous Phases

PARKING

PHASE 10A
- 0 stalls

PHASE 10B
- 0 stalls
- 548 stalls
- 548 stalls
- 3,499 stalls

PHASE 10B
- 0.4M gsf
- 0.3M gsf
- -0.1M gsf
- 6.5M gsf

PHASE 10A
- 0.4M gsf
- 0 stalls

BUILDING PROGRAM
- Building F 315,000 gsf

PARKING
- 0 stalls

PARKING
- 548 stalls
- 548 stalls
- 3,499 stalls

PARKING
- 6.5M gsf
- 3,499 stalls

PARKING
- 0 stalls
- 548 stalls
- 3,499 stalls

PARKING
- 6.5M gsf
- 3,499 stalls
SECTION 06. PHASING AND IMPLEMENTATION

PHASE 11A
- Phase 10 requires demolition of J Wing.

UNITS AFFECTED
Health Sciences Administration
School of Medicine

BUILDING PROGRAM
<table>
<thead>
<tr>
<th>Demolition</th>
<th>0.2M gsf</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parking</td>
<td>0 stalls</td>
</tr>
</tbody>
</table>

PARKING
<table>
<thead>
<tr>
<th>Demolition</th>
<th>0 stalls</th>
</tr>
</thead>
<tbody>
<tr>
<td>New</td>
<td>0.4M gsf</td>
</tr>
<tr>
<td>Net</td>
<td>0.2M gsf</td>
</tr>
</tbody>
</table>

PHASE 11B
- Replace J Wing.
- Complete East-West spine.
- Complete pedestrian and edge conditions improvements along NE Pacific Street.
- In addition to the new 204 parking stalls under Building D, 159 parking stalls under Building C from phase 8 is now accessible.

BUILDING PROGRAM
<table>
<thead>
<tr>
<th>Demolition</th>
<th>0.2M gsf</th>
</tr>
</thead>
<tbody>
<tr>
<td>New</td>
<td>0.48M gsf</td>
</tr>
<tr>
<td>Net</td>
<td>0.23M gsf</td>
</tr>
</tbody>
</table>

PARKING
<table>
<thead>
<tr>
<th>Demolition</th>
<th>0 stalls</th>
</tr>
</thead>
<tbody>
<tr>
<td>New</td>
<td>363 stalls</td>
</tr>
<tr>
<td>Net</td>
<td>363 stalls</td>
</tr>
<tr>
<td>Total</td>
<td>6.7M gsf</td>
</tr>
</tbody>
</table>

Figure 178: Phase 11A

Figure 179: Phase 11B

Building D 411,000 gsf
SECTION 06. PHASING AND IMPLEMENTATION

Phase 06. Phasing and Implementation

Table 180: Phasing New Building GSF

<table>
<thead>
<tr>
<th>Phase</th>
<th>GSF</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>62,000 gsf</td>
</tr>
<tr>
<td>B</td>
<td>97,000 gsf</td>
</tr>
<tr>
<td>C</td>
<td>310,000 gsf</td>
</tr>
<tr>
<td>D</td>
<td>411,000 gsf</td>
</tr>
<tr>
<td>E</td>
<td>296,000 gsf</td>
</tr>
<tr>
<td>F</td>
<td>315,000 gsf</td>
</tr>
<tr>
<td>G</td>
<td>359,000 gsf</td>
</tr>
<tr>
<td>H</td>
<td>387,000 gsf</td>
</tr>
<tr>
<td>I</td>
<td>159,000 gsf</td>
</tr>
<tr>
<td>J</td>
<td>319,000 gsf</td>
</tr>
<tr>
<td>K</td>
<td>346,000 gsf</td>
</tr>
<tr>
<td>L</td>
<td>504,000 gsf</td>
</tr>
<tr>
<td>M</td>
<td>101,000 gsf</td>
</tr>
<tr>
<td>N</td>
<td>238,000 gsf</td>
</tr>
<tr>
<td>O</td>
<td>129,000 gsf</td>
</tr>
<tr>
<td>P</td>
<td>314,000 gsf</td>
</tr>
<tr>
<td>Q</td>
<td>145,000 gsf</td>
</tr>
<tr>
<td>R</td>
<td>391,000 gsf</td>
</tr>
<tr>
<td>S</td>
<td>22,000 gsf</td>
</tr>
</tbody>
</table>

Figure 180: Phasing New Building GSF

NOTE: It is possible to construct Building H within Phase 1 of both South Campus function expansion and UW Medical Center expansion, however, due to unknown future circumstances, it is not possible to predict which option will be implemented first.

Table 157: Future Phased Plan of South Campus

<table>
<thead>
<tr>
<th>Phase</th>
<th>NET</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>+ 1.2M gsf</td>
</tr>
<tr>
<td>2</td>
<td>+ 0.4M gsf</td>
</tr>
<tr>
<td>3</td>
<td>+ 0.1M gsf</td>
</tr>
<tr>
<td>4</td>
<td>+ 0.1M gsf</td>
</tr>
<tr>
<td>5</td>
<td>+ 0.1M gsf</td>
</tr>
<tr>
<td>6</td>
<td>+ 0.1M gsf</td>
</tr>
<tr>
<td>7</td>
<td>+ 0.1M gsf</td>
</tr>
<tr>
<td>8</td>
<td>+ 0.2M gsf</td>
</tr>
<tr>
<td>9</td>
<td>+ 0.3M gsf</td>
</tr>
<tr>
<td>10</td>
<td>+ 0.1M gsf</td>
</tr>
<tr>
<td>11</td>
<td>+ 0.2M gsf</td>
</tr>
</tbody>
</table>

Total Net: + 2.4M gsf

Existing: 4.3M gsf
Total Net: 2.4M gsf
Long Term: 6.7M gsf

Figure 157: Future Phased Plan of South Campus
IMMEDIATE NEEDS
Potential for infill of South Campus to accommodate initial redevelopment is constrained to the S1 parking garage location in order to initially add a significant amount of square footage to South Campus. As its function is critical to South Campus, any removed parking must be temporarily replaced in lots adjacent to South Campus during construction.

There are 956 existing parking stalls within South Campus (UWMC Surgery Pavilion parking not included). S1 parking provides 862 stalls.

- Replace the west portion of S1 parking (around 2/5 of the existing structure) with underground parking and Building N, while keeping the east portion of S1 parking functioning.
- Improve the west section of NE Columbia Road with temporary landscape upgrades.
- Enhance connections to South Campus center.

BUILDING N

- **238,000 gsf**

BUILDING PROGRAM

<table>
<thead>
<tr>
<th></th>
<th>Existing</th>
<th>Demolition</th>
<th>New</th>
<th>Net</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parking</td>
<td>956 stalls</td>
<td>345 stalls</td>
<td>359 stalls</td>
<td>14 stalls</td>
<td>970 stalls</td>
</tr>
</tbody>
</table>

PARKING

- **Existing**: 956 stalls
- **Demolition**: 345 stalls
- **New**: 359 stalls
- **Net**: 14 stalls
- **Total**: 970 stalls

Figure 182: Phasing

Figure 183: Phasing

Figure 184: Phasing

172 UW South Campus Study

173 UW South Campus Study
SECTION 06. PHASING AND IMPLEMENTATION

BUILDING P
- Replace the east portion of S1 parking (around 3/5 of existing structure) with expansion of the underground parking and Building P.
- Improve NE Columbia Road with temporary landscape upgrades. Widening and straightening the existing portion of the road are not feasible until demolitions of B Wing (Phase 2) and RR Wing (Phase 5).
- Enhance connection to Portage Bay Building.

<table>
<thead>
<tr>
<th>Demolition</th>
<th>New</th>
<th>Net</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>0M gsf</td>
<td>0.3M gsf</td>
<td>0.3M gsf</td>
<td>4.8M gsf</td>
</tr>
<tr>
<td>517 stalls</td>
<td>372 stalls</td>
<td>145 stalls</td>
<td>825 stalls</td>
</tr>
</tbody>
</table>

Building P 314,000 gsf

BUILDING M
- Replace S5 and S12 parking with an expansion of the underground parking and Building M.
- Enhance the entrance to South Campus with landscape improvements, realigning the westernmost section of NE Columbia Road and establishing a direct vehicular entrance to underground parking.
- Enhance pedestrian, bicycle and vehicular circulation from West Campus.

<table>
<thead>
<tr>
<th>Demolition</th>
<th>New</th>
<th>Net</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>0M gsf</td>
<td>0.1M gsf</td>
<td>0.1M gsf</td>
<td>4.9M gsf</td>
</tr>
<tr>
<td>286 stalls</td>
<td>147 stalls</td>
<td>119 stalls</td>
<td>944 stalls</td>
</tr>
</tbody>
</table>

Building M 101,000 gsf
SECTION 07. UW MEDICAL CENTER: PHASING AND IMPLEMENTATION
SECTION 07. UW Medical Center: Phasing and Implementation

PHASING
The UW Medical Center (UWMC) is an integral part of the future vision of South Campus. Potential redevelopment of the existing buildings required a deeper study of UWMC units, as their functions were historically tied to the buildings they occupy.

This section describes a growth-oriented phased scenario for the long-term build-out of the UWMC. Any future planning efforts should recognize this study as a working tool for identifying capacity and the future growth potential in the context of supporting the South Campus vision and goals described in Section 5.

Detailed review of the issues (building conditions, future program needs, parking needs, critical functions, adjacency requirements, etc.) informed the solution for UW Medical Center expansion and redevelopment. It should be noted that the phasing strategy described in the pages to follow is one of many possible development scenarios that allow the accommodation of long-term growth. Phasing not only includes the unit "chess-moves" required but also phased underground parking and improvements to the character of South Campus and its adjacent open space.

The phasing described in this section strives for a single move for every unit to its permanent location. Additional scenario alternatives were developed and have been included in Appendix H. Ultimately, the goals of the preferred option do not directly address the need to organize and "right-size" programs within the existing buildings to remain, however, additional capacity is available in the final phase to allow for this. (The alternative scenarios began to address the potential decompression of SS and EE Wings.)

Each of the three preferred phasing options includes two steps: (1) construction of a new space with below-grade parking and site improvements, (2) programs relocate to new space, allowing for removal of the existing facility. By Phase 3, all of the 6.7M gsf of program will have been located to permanent space within South Campus, with critical adjacencies addressed.

Near-Term Projects
Building H is identified as a first enabling site for UWMC and South Campus functions, and would be favorable from both perspectives. This is the only site adjacent to the UW Medical Center that would not require significant above-grade demolition (although development would require the extraction and demolition of below-grade structure). It is used initially for South Campus functions. It may not be needed in the long-term (per the program analysis) and could be converted to UWMC space. If it is initially used for South Campus functions, it is not re-used in the long-term (per the program analysis) and could be converted to UWMC space. If it is initially used for South Campus functions, it is not re-used in the long-term (per the program analysis) and could be converted to UWMC space.

PHASING SUMMARY
Following the vision initiated by the vision of South Campus functions, future development of the UWMC provides similar open space amenities, phased below-grade parking, efficient and organized floor plates, and a destination or terminus of the central corridor spine.
SECTION 07. UWMC PHASING AND IMPLEMENTATION

ENABLING PHASE TODAY

• Existing UW Medical Center maintained with 1.2M gsf

• Programs occupying underground facilities of NW Wing are relocated out of South Campus (approx. 50,000 gsf of future need) or discontinued:
 - Pharmacy
 - Laboratory
 - Pathology
 - Cyclotron (discontinued)

• Resulting vacant space is demolished (total current gross square footage not available) and provides base for new development.

• H Building erected with 171 below-grade parking stalls accessible from NE Pacific St.

UWMC UNITS RELOCATED TO H

<table>
<thead>
<tr>
<th>IP Rehab</th>
<th>ENT Clinic</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP Psychiatry</td>
<td>Interventional RAD</td>
</tr>
<tr>
<td>Transplant</td>
<td>Prep/Recovery</td>
</tr>
<tr>
<td>LDB</td>
<td>Rad. Oncology</td>
</tr>
<tr>
<td>Transplant Offices</td>
<td></td>
</tr>
</tbody>
</table>

BUILDING H

<table>
<thead>
<tr>
<th>AREA</th>
<th>PARKING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demolition</td>
<td>n/a</td>
</tr>
<tr>
<td>New Core Construction</td>
<td>367,000 gsf</td>
</tr>
<tr>
<td>Net Increase</td>
<td>n/a</td>
</tr>
</tbody>
</table>

Total UWMC

1,581,000 gsf

438 stalls

FUTURE UWMC BUILDOUT

• Proposed South Campus with 6.4M gsf

• Programs occupying underground facilities of NW Wing are relocated out of South Campus (approx. 50,000 gsf of future need) or discontinued:
 - Pharmacy
 - Laboratory
 - Pathology
 - Cyclotron (discontinued)

• Resulting vacant space is demolished (total current gross square footage not available), providing base for new development.

• Building H erected with 171 below-grade parking stalls accessible with access from off Pacific St.

• Affected programs affected move into Building H, vacating space to allow for demolition.

UWMC UNITS RELOCATED TO H

<table>
<thead>
<tr>
<th>IP Rehab</th>
<th>ENT Clinic</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP Psychiatry</td>
<td>Interventional RAD</td>
</tr>
<tr>
<td>Transplant</td>
<td>Prep/Recovery</td>
</tr>
<tr>
<td>LDB</td>
<td>Rad. Oncology</td>
</tr>
<tr>
<td>Transplant Offices</td>
<td></td>
</tr>
</tbody>
</table>

BUILDING H

<table>
<thead>
<tr>
<th>AREA</th>
<th>PARKING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demolition</td>
<td>88,000 gsf</td>
</tr>
<tr>
<td>New Construction</td>
<td>367,000 gsf</td>
</tr>
<tr>
<td>Net Increase</td>
<td>279,000 gsf</td>
</tr>
</tbody>
</table>

Total South Campus

6,718,000 gsf

3,862 stalls

180 UW South Campus Study

181 UW South Campus Study
FUTURE UWMC BUILDOUT

- Demolish NN Wing and replace with Building T, sharing a connected podium adjacent to the central spine to the south.
- Programs occupying EA and EB Wings are relocated to the new Building T.
- Resulting vacant space is available for redevelopment of building and the potential for open space to include enhanced entry drives and thru connections to the waterfront.

UWMC UNITS RELOCATED TO T

<table>
<thead>
<tr>
<th>Oncology Clinic</th>
<th>Transplant/Dialysis</th>
<th>Infusion</th>
<th>ICU BMT/ONC</th>
<th>IP Hem Onc/Transpl</th>
<th>IP Ortho</th>
<th>IP Cardiac/MS</th>
<th>IP Cardiac/MS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transplant/Dialysis</td>
<td>ICU BMT/ONC</td>
<td>Infusion</td>
<td>IP Hem Onc/Transpl</td>
<td>IP Ortho</td>
<td>IP Cardiac/MS</td>
<td>IP Cardiac/MS</td>
<td></td>
</tr>
</tbody>
</table>

BUILDING T

<table>
<thead>
<tr>
<th>AREA</th>
<th>PARKING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demolition</td>
<td>122,000 gsf</td>
</tr>
<tr>
<td>New Core Construction</td>
<td>395,000 gsf</td>
</tr>
<tr>
<td>Net Increase</td>
<td>273,000 gsf</td>
</tr>
<tr>
<td>Total South Campus</td>
<td>6,991,000 gsf</td>
</tr>
</tbody>
</table>

FUTURE UWMC BUILDOUT

- Demolish vacant EA and EB Wings and replace with Building U.
- Expand open space to include north-south views and pedestrian accessibility.
- Entry at terminus of central spine corridor established on west edge of new open space, allowing for enhanced patient drop off/pick-up opportunities.

BUILDING U

<table>
<thead>
<tr>
<th>AREA</th>
<th>PARKING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demolition</td>
<td>229,000 gsf</td>
</tr>
<tr>
<td>New Core Construction</td>
<td>461,000 gsf</td>
</tr>
<tr>
<td>Net Increase</td>
<td>232,000 gsf</td>
</tr>
<tr>
<td>Total South Campus</td>
<td>1,227,000 gsf</td>
</tr>
</tbody>
</table>
Phase | GSF
---|---
A | 62,000 gsf
B | 97,000 gsf
C | 310,000 gsf
D | 411,000 gsf
E | 296,000 gsf
F | 315,000 gsf
G | 359,000 gsf
H | 360,000 gsf
I | 159,000 gsf
J | 319,000 gsf
K | 346,000 gsf
L | 504,000 gsf
M | 101,000 gsf
N | 238,000 gsf
O | 129,000 gsf
P | 314,000 gsf
Q | 145,000 gsf
R | 101,000 gsf
S | 22,000 gsf
T | 396,000 gsf
U | 461,000 gsf

NOTE: Building H within Phase 1 is possible for initial phases of both South Campus function expansion and UW Medical Center expansion, however due to unknown future circumstances it is not possible to predict which option will be implemented first.