4.0
Site Analysis
During the first half of 2007, the University studied several potential sites for the proposed new Molecular Engineering Interdisciplinary Academic Building (MEIAB). The specifics of the process and rationale for the selection of the proposed site are documented in the April 2007 Feasibility Study and the August 2007 Architectural Opportunities Report. The following site analysis and program information focus on Site 25c located within Development Area C-7 as identified in the current 2001 University of Washington Master Plan and is intended to outline specific site context, conditions, requirements and opportunities. The contents of this section also form the Site Programming Report that is the result of work done by the project specific campus Site Programming Committee.

Site Goals and Objectives
The site goals and objectives are guided by and consistent with the goals of the 2001 University of Washington Master Plan, Seattle Campus and include:

- Improving and enhancing the open space character of the core campus.
- Creating forms and open spaces complimentary in scale and character with the core campus.
- Using new development to strengthen campus form by clearly defining open spaces, views and circulation routes, respect the unique qualities of the site to maintain and protect the value of the University’s physical resources, historic features and character of the campus.

Site overlayed on campus aerial.
Site History
The original University of Washington campus plan, known as the Oval Plan of 1898 was designed by Professor A.H. Fuller and was followed with the 1904 plan by the Olmsted Brothers. The subsequent plan oriented the campus to the views of Lake Washington and the Cascade Mountains.

Construction of facilities for the 1909 Alaska-Yukon-Pacific Exposition accompanied by the Olmsted Brothers’ establishment of the axial Rainier Vista shifted the focus of campus development to the south and created the alignment for Steven’s Way to the west of the project site. This shift altered the underlying planning grid for the campus. Subsequent campus plans, including the Regents Plan of 1915, the Bebb & Gould plan of 1934 and the General Development Plan of 1962, continued to direct new construction to other parts of the campus.

Site Programming Process
The site programming process at the University of Washington is structured around a series of working sessions in conjunction with technical studies, discussions with the client and site research. As prescribed by the University, a Site Programming Committee was formed and provided guidance on the development of this Site Programming Report. The process draws upon the necessary broad range of campus representatives to assure an informed discussion of the issues. Representatives include the College of Engineering, the College of Arts & Sciences, University Faculty, Transportation Services Office, Facilities Services, Campus Engineering and the Capital Projects Office. Additionally, representatives from Johnson Hall, the Atmospheric Sciences-Geophysics Building and Quaternary Lab were consulted to gain a understanding of the current site use patterns and needs.

Existing Site Conditions
Site Location and Context
The proposed site for the MEIAB project engages a prominent location within the central campus, directly south of Red Square. Currently, both Johnson Hall annex and Cunningham Hall occupy the site. The site is defined by Stevens Way to the west, Grant Circle to the north, Johnson Hall and courtyard to the west, and Atmospheric Sciences and Chemistry Library to the south. With the proximity to Grant circle, the site serves as a gateway to the campus from NE 40th Street.
MEANY HALL, 1974, exterior renovation 1994
Music and dance performance hall with 1200-seat main auditorium and smaller studio theater. Serves both campus and public audiences.

GERBERDING HALL, 1949
Administration building housing University and Graduate School administrators.

JOHNSON HALL, 1930
JOHNSON ANNEX, date unknown
Johnson houses the department of Geological Sciences and supports the Botany department. The annex houses faculty, students, and staff from the Psychology and Geology depts.

ARCHITECTURE HALL, 1909, renovation 1987
The only permanent AYP Expo building remaining on campus. Now houses offices, classrooms and studios of the Architecture Dept., as well as a large auditorium.

CUNNINGHAM HALL, 1909, renovation 1979
Built as a temporary structure for the AYP Expo Women’s Building. Now houses the UW Women’s Center.

GUTHRIE HALL, 1973
Houses the Psychology Dept’s administrative, teaching and research laboratory facilities.

ATMOSPHERIC SCIENCES, 1970
Houses the atmospheric sciences and geophysics program. The basement houses seismology facilities.

CHEMISTRY LIBRARY, 1957, addition 1989
Originally the Drama-TV Building, it now houses the Chemistry Library.
Current Use
Current use of the site and its adjacent areas (identified as Development Area C-7) represents a broad range of uses that include buildings housing classrooms, offices and libraries; parking; vehicular routes; service areas; pedestrian systems; and open space.

Existing Facilities
Johnson Hall, completed in 1930, and its neighboring facility the Atmospheric Sciences-Geophysics Building along with the below-grade Quaternary Lab form the immediate surroundings of the selected site for the project. Cunningham Hall and the Johnson Hall Annex currently occupy the proposed site.

Cunningham is the last remaining temporary structure from the Alaska-Yukon Pacific Exposition on campus. Due to its historic nature and its current use as the Women’s Center, Cunningham is proposed to be relocated prior to the construction of the new MEIAB project. The Johnson Annex is a facility that has reached the end of its useful life and will be torn down.

Natural and Open Space Systems
The project site can be characterized as a predominantly wooded campus environment with a medium to high mature canopy of mixed deciduous and evergreen trees. The topography generally
slopes to the south with the slopes broken by developed platforms and an overall grade change of approximately twenty-two feet.

The shelter of the mature landscape results in pockets of sun and generous areas of shade throughout the project area. The predominate wind out of the southwest and north is mitigated by the tree canopy resulting in a fairly sheltered environment for pedestrians with the prevailing winds audible in the trees.

The habitat opportunities on campus are likely to include Gray Squirrel, feral Cats, Raccoons, Opossums, Rats, and House Mice. More than thirty species of common and relatively common birds have been observed on the central campus. Those identified in the March 1993 Final Supplemental Environmental Impact Statement for the Business Administration Expansion that are likely to occur in the project area include starlings, European sparrows and tree swallows. Barn owls are identified as a species that is thought to control the rodent and pigeon population. The development of the MEIAB project is not anticipated to have an impact on habitat corridors but will change the character of some nesting sites and foraging areas.

Key open space areas have been identified within the larger proposed site context and include Grant Lane Circle, Gerberding Hall Drop-Off and Parking Areas, Johnson Hall and Atmospheric Sciences - Geophysics Buildings and Quaternary Research Building Courtyard, and the Steven's Way Corridor.
Grant Lane Circle
Grant Lane Circle currently includes a vehicular turn around accessed from NE 40th Street. The circle provides vehicular and service access to the Gerberding Hall parking area, Johnson Hall parking and a southern entry to the Central Parking garage. The circle provides emergency vehicle access to Grant Lane and access to Johnson Hall loading. The primary use of the circle is for drop offs and pick ups. The northern edge of the circle is flanked by two mature Deodar Cedar Trees and at the south, one mature Locust tree and one mature Blue Atlas Cedar.

Gerberding Hall Drop-off and Parking Areas
The Gerberding Hall parking area provides three standard parking stalls, seven accessible stalls, and a location for trash pick up. The parking area also serves as vehicular access for dignitaries visiting Gerberding Hall. This space is characterized by the predominant utilitarian program elements.

Johnson Hall and Atmospheric Sciences - Geophysics Building and Quaternary Research Building Courtyard
The primary design element of the courtyard is an oval lawn outlined with pedestrian walks providing access to the north and west sides of Johnson Hall and Atmospheric Sciences. Lush landscaping and benches surround the oval, highlighted by two mature Horsechestnut trees. The courtyard is recent construction and the University would like to preserve as much of the courtyard design as possible within the proposed MEIAB project.

Steven’s Way Corridor
Steven’s Way is the western edge of the project site. It is lined with mature Poplar trees which are in decline. One large, well structured Poplar tree sits at the intersection of Steven’s Way and Grant Lane Circle. An arborist will review the health and condition of this tree. The University has stated that the sidewalks at Steven’s Way are narrower than University standards and would like to see them widened if possible.

Architectural and Historic Structures
Nearby campus buildings reflect a variety of architectural styles. Architecture Hall is a classical remnant of the AYPE. Cunningham, another AYPE structure, originally had a stucco exterior but was eventually replaced with wood siding. The collegiate gothic style was adopted in 1914 as part of the campus plan and was used for both Johnson Hall and Gerberding. Atmospheric Science and Meany Hall were built in the 1970s and maintain the brick exteriors of their earlier neighbors but lack the gothic decoration.

Views
The project site is positioned to further delineate critical view corridors that define and structure the campus experience. To integrate the new building into the campus landscape and strengthen the sense of place, it is critical that these views be protected and reinforced. The University of Washington Campus Master Plan, Seattle Campus looks for opportunities to enhance view and vistas throughout the campus. Important view corridors for the MEIAB Project include the view corridor to and from Allen Library looking east or west to the MEIAB project site; the view corridor from Red Square looking south between Meany Hall and Gerberding Hall; the view corridor from Okanogan Way looking north-northwest; and the view from the NE 40th Street campus entry looking east to the project site.
Views to and from the site.

View from Grant Lane/Allen Library

View from Red Square

View from 40th St. Entry/Stevens Way

View from Okanogan Lane
Circulation Patterns

Vehicular circulation occurs on the west, north and south sides of the project site. 40th and Stevens Way are major spines providing access through the campus, the majority of the auto traffic entering on 40th turns south onto Stevens Way. Bus traffic continues south down Stevens Way. Service access occurs from the south via the load/unload area south of Johnson Hall Annex and East of the Atmospheric Sciences – Geophysics Building. The project offers the opportunity to consolidate service activities with a new facility and improve the current conflicts between pedestrian and vehicular movements along Okanogan Lane.

Parking is located in the small lot adjacent to Cunningham Hall and Johnson Hall Annex that is part of the parking area identified as C6. The Grant Lane Circle also serves as a visitor drop-off and provides a facility for taxis, vans and other service vehicles.

The Disabled Shuttle has drop-off areas in the vicinity that should be maintained and increased as required by project needs. Potential disabled parking areas include parts of the Gerberding Hall C6 lot. Following current codes and policies, disabled parking and access to the MEIAB project...
should be in close proximity to or integrated into the building. Where reasonable, disabled access should be integrated with the main entry sequence.

Bicycle access to the site is via the campus roads and paths. Stevens Way, Grant Lane and Okanogan Lane are primary routes. Approximately 61 bicycle parking spaces (covered and secure) are currently provided on site next to the Johnson Hall Annex.

| ASSUMPTIONS |
Building Population (# provided by UW, excludes lecture hall)	130
Lecture Hall (Max Classroom Cap.)	125
Total	255

| CALCULATED REQUIREMENT |
| COVERED BIKE PARKING | 13 |
| (10% of bldg. pop.+ 5% of max classroom capacity) |
| SECURE BIKE PARKING | 6 |
| (3% of bldg. population) |
| Total Calculated Number of Spaces* | 19 |
| *calculated numbers are less than the minimum required so minimum will be used - see below |

| MINIMUM REQUIRED SPACES (per campus transportation services standard) |
| Minimum Required Spaces - Covered Spaces | 24 |
| Minimum Required Spaces - Secure Spaces | 10 |

| EXISTING SPACES DISPLACED (Johnson Annex, Cunningham) |
| Covered Spaces | 33 |
| Secure Spaces | 28 |

| Minimum Total Bike Parking Provided on Site |
| Covered Spaces (displaced plus min. required) | 57 |
| Secure Spaces (displaced plus min. required) | 38 |

The site is a juncture of primary and secondary pedestrian paths as people move between central campus and the science buildings of south campus, and to and from 40th St, a major campus entry-point. Grant Lane from Allen Library is a major pedestrian route and connects with Stevens Way. Okanogan Lane, South of the site, is a major route for students and faculty in Bagley Hall and other Science Buildings to the South. Other minor routes include the Meany Steps that connect the site with Red Square, a major plaza and gathering point, and the Johnson Hall/Atmospheric Science courtyard, which provides several entry points to each building.
The campus mobility route map in the 2007-2008 Access Guide for Persons with Disabilities identifies several primary accessible building entries adjacent to the proposed project site that will be maintained. Accessible routes connecting across the site are either serving buildings that will be removed as part of the project or are indicated as not providing a consistent path. Accessible cross-site routes will be integrated into the development of the site and building schemes.

Utilities
Civil utilities, including water, sanitary sewer and storm drains are available at the site. In addition, the campus utility tunnel crosses beneath the footprint of the MEIAB project site in a north/south direction. A connection to the tunnel will provide mechanical, electrical and communication services.

Water service for both domestic use and fire protection for the building can be provided with a connection to an existing 10-inch water main located in Stevens Way west of the proposed site.
Sanitary sewer service can also be provided with a connection to the existing combined sewer located west of the site in Stevens Way.

Storm water can be routed to the storm sewer that ultimately connects into the City of Seattle system along 15th Avenue.

Connections to mechanical, electrical and communication services could be made at the existing utility manhole shaft, WT-2, which is located immediately adjacent to the proposed building footprint.

Relationship to Existing Plans and Policies

University of Washington Master Plan, Seattle Campus
The master plan provides guidance for the conservation and development of the campus. It builds on and replaces the previous 1992 General Physical Development Plan (GPDP). The plan provides policies for guiding site development of three million square feet, and identifies significant campus zones which influence or include the project area.

The plan recommends routes of campus-wide pedestrian and bicycle movement, areas of vehicular improvement parking improvements and development sites. The project site is identified in the plan as Site 25c in Development Area C-7. The Master Plan provides recommendations for building siting and setbacks, and defines relationships to Johnson Hall and its recently improved courtyard space.

The building program and site planning for this project are consistent with development guidelines established in the University of Washington Master Plan, Seattle campus.

Plant Association Master Plan
The Plant Association Master Plan divides the campus into bioclimatic zones with consideration for ecological characteristics. The plan develops the campus plant collection as a teaching tool, and reflects the bioclimatic zones of the campus in the plant collection. The project site sits within the Mixed Pacific Rim zone. The intent is that this plant zone identification will inform design and plant selection for the site.

The site has a variety of tree species ranging from poplars and blue atlas cedars, to crab apples and Chesnuts. Trees that will be impacted by construction have been identified and key trees have been selected for further study. The intent is to investigate tree health during the schematic design phase. Due to the large ground contact lab space requirement identified in the plan for the project and the relatively small and constrained site, there is a high likelihood that most of the trees identified in the tree diagram will need to be removed to accommodate the ultimate 160,000 GSF proposed for the facility.

Solar Access
Solar access to the site has been studied and its limitations and opportunities will be considered in the programmatic organization of the building. Daylighting studies will help orient the courtyard and maximize natural light in the labs and offices.
Tree Impact Study

Summer and Winter Sun Access
Proposed Adjoining Projects and Other Potentially Related Projects

Stevens Way Improvements
Future proposed improvements to Stevens Way may alter the way the intersection at 40th is configured. There have been discussions within the University to soften the radius at Grant Lane and/or lower the grade at this intersection. As much as possible, the MEAIB project should anticipate the potential changes.

Grant Lane Circle and Gerberding Hall Parking Area
The University has a desire to improve the visual identity for Grant Lane Circle and the Gerberding Hall parking lot to better reflect the importance of this campus access node. The circle is dominated by vehicular program elements and it is desired to have the circle be primarily pedestrian focused.

Cunningham Hall Relocation
The preferred MEIAB scheme relocates Cunningham Hall to allow for the full use of the project site. The site sits on the edge of the science sector of campus and Cunningham Hall currently houses the Women’s Department.

General Requirements

Infrastructure and Access

Vehicular Facilities
The intersection of 40th and Stevens Way is a busy vehicular and pedestrian campus intersection that provides one of only three primary campus core access points for vehicles. Vehicular entries from 40th, the Grant Lane Circle, Okanogan Way and Stevens Way must be located so they do not conflict with the pedestrian and vehicle flow.

- The Johnson Hall requires a drop-off zone for frequent off-campus visitors arriving in school buses and vans. This drop-off area needs to be near the main building entry. It is likely that delivery trucks for small package deliveries may use this drop-off zone.
- Any displaced on-site general purpose parking will be relocated to other existing lots on campus with 6 ADA stall being provided on or adjacent to the new facility.
- Transportation Services has provided a checklist for use in developing the loading dock, however detailed requirements should be reviewed with the MEIAB Building Committee, the occupants of adjacent facilities and Transportation Services as the project evolves during the Schematic Design Phase. Consideration should be made for the need for short-term parking for University service vehicles for the new facility as well as the existing Johnson
Hall, Atmospheric Sciences-Geophysics Building and the Quaternary Research Buildings.

- The main Johnson Hall, Atmospheric Sciences-Geophysics Building and the Quaternary Research Buildings loading area on the south side of the project site is marginally adequate. Any modifications to the building access off of Okanogan Lane will maintain the existing Johnson Hall, Atmospheric Sciences-Geophysics Building and the Quaternary Research Buildings service access. Opportunities to improve the service access may be possible by sharing and expanding the existing loading area along with the proposed project and will be explored as the project proceeds.
- Emergency access routes and lanes including the fire lane along Okanogan Lane, should be included in the site planning to provide and maintain access to the new building, adjacent buildings.

Pedestrian Facilities

The proposed project is located in an area of significant pedestrian activity with two major corridors connecting the campus with the surrounding community passing through the project area.

- Pedestrian routes should be located and sized to support the existing pedestrian patterns and volumes, to clarify campus organization and legibility.
- Minor pedestrian routes should be located to support the larger pedestrian system and provide varied campus experiences.
- Physical design should facilitate way-finding and eliminate confusing and potentially unsafe mixed-use areas. Examples include the service area behind Johnson Hall and the loading dock at area.
- The potential for ‘dead end’ routes should be evaluated. These often result in frustration, confusion and potential security problems.
- Pedestrian routes should be developed to further the access systems throughout campus for those with disabilities.

Bicycle Facilities

- Approximately 18% of those coming to the University arrive via bicycle. Some cyclists park their bicycle at the Johnson Hall Annex racks for the bulk of the day while others, especially undergraduate students, use the racks for only limited periods throughout the day.
- Currently 61 bicycle spaces exist in the vicinity of the project site. The recommended capacity is 10% of the building population, defined as all faculty, staff and paid student workers, and 5% of the maximum student classroom capacity, or 24 spaces, whichever is greater. This calculation suggests the minimum 24 spaces should be planned. These calculations are intended to provide a framework for defining minimum requirements. In addition to the added spaces, the project should replace the spaces displaced by the development. The resulting number of spaces equals 57 covered spaces and 38 secured stalls. A further evaluation of demand will be required to assure that the necessary space is provided for all the needs of this area of campus.
- Bicycle parking will need to include provisions for both protected storage and easily accessible locations near building entries. Bicycle parking facilities include: racks, covered racks, wall mounting, lockers and cages in a garage or other storage area.
- Additional bicycle parking spaces should be provided on site close to building entries, with adequate space to assure ease of access and limit the potential damage to other facilities and the landscape.
• Location of bicycle parking facilities should respond to the user’s desire to have as direct a relationship between point of origin and destination with convenient and safe parking. The added amenity of a locker or cage has been found to result in a willingness to go additional distances to assure the protection of a valued asset. The location and sitting of bicycle parking in areas other than the garage should respond to the “desire-line” objective and offer ease of use.

Universal Access

Creating and maintaining accessible routes to neighboring buildings both when the new facility is complete and during construction is important and appropriate planning will occur to ensure continued access. The current campus accessibility plan will be used as a guide and the committee will be consulted to confirm provisions included in the project.

• The campus access system for persons with disability should follow the same routes as other pedestrian access wherever possible. Where existing Site slopes and constraints require alternate routing, these routes should conform to the same standards of safety, clarity and natural way-finding as other pedestrian facilities.

• Existing routes should be reviewed and new routes located and sized to support existing campus access patterns and to clarify campus organization and legibility for persons of all abilities.

• Physical design should be used to facilitate way-finding and eliminate confusing, and potentially unsafe mixed-use areas, such as loading docks or vehicular access.

• As in pedestrian routes, potential “dead end” routes should be eliminated that result in frustration and exhaustion.

• Frequent resting areas should be provided along access routes in the firm or benches, sitting walls and landings.

• Dial-a-ride locations adjacent to and on the project site will be reviewed and relocated as needed to maintain the current level of access.

• Additional opportunities to promote usability by all people to the greatest extent possible should be explored.

Waste and Recycle collection

Waste and recycling collection will be combined with the existing facilities at the loading areas for Johnson Hall. The proposed project will expand the current capacity and improve the function of loading area to accommodate the increased capacity anticipated.

• Access to waste disposal and storage should be located to prevent conflict with existing vehicular and pedestrian circulation patterns. Recycle collection and pickup should be adjacent.

• The needs for special waste disposal and recycle should be discussed with the MEIAB possible users.

• Waste and recycle containers must be accessible by standard collection vehicles.

Open Space and Planting

• The existing mature woodlands and mature trees establish the character and scale of this part of campus. Preservation and enhancement of these plantings is a project priority. The project site contains mature ‘campus scaled’ trees that contribute to the positive image of the site and the overall impression of the campus.
• Additional planting associated with the project will use a design strategy in keeping with the existing landscape character. The existing landscape language of high canopy, relatively open ground plane and strategically located shrub massing will be used.
• Formalized exterior space for gathering at entries and in courtyards is recommended to support the MEIAB users, and to provide campus organization and opportunities for collegial gathering. These should take advantage of sun and light opportunities as well as sites to maximize the appreciation of views.
• The design principles of safety and security through environmental design should be applied.
• Open space and planting design should reflect the need for low maintenance.

Irrigation

• The irrigation system design should consider the potential for a mixed system of temporary irrigation to support plant establishment and a permanent system for areas that, due to intensity of use, turf and/or exposure, will require ongoing irrigation.
• The potential for using rainwater, gray water, storm water grass-lined swales and other water use reduction systems should be evaluated. The system must be designed per University of Washington Standards.

Site Furnishings

• The location and type of site furnishings should be coordinated with the areas of pedestrian use, gathering areas, and routes of travel.
• The sitting of furnishings should foster the desired social interactions, of community development, and collegial interaction among the various schools and departments sharing this part of campus.
• Where possible, furnishings should he combined with other site elements such as low seating walls to foster gathering and informal conversation.
• Seating should be provided every 100 feet between disabled parking and entries.
• Waste, recycle and ash facilities should be provided in areas where gathering is projected and which are accessible by vehicle for maintenance purposes.
• The University recently began designating smoking areas with ash cans. Ash urns should be provided in strategic locations, under cover if possible, away from entries, air intakes and windows. This will avoid fires in trash cans and cigarette butts on the ground.
• To avoid unnecessary signage, use site design to foster local natural way-finding.
• Lighting must he provided in courtyards and along pedestrian routes. Due to the existing character of mature plantings, lighting will need to he selectively inserted to assure safe and secure campus use. This lighting must comply with standards of resource conservation, campus light standard design and replacement requirements.

Maintenance Requirements

• The relationships between building and Site should he evaluated to maintain ease of access and minimize potential future impacts on site vegetation.
• Material selection and design should he provided for low maintenance and an extended life.
• The approach to site and landscape design and maintenance must he coordinated with appropriate University staff consideration must he given to ease of access, topography, species maintenance requirements and litter.
• Maintenance practices that support campus sustainability goals should be supported during the design phases.
• Vehicular access must be provided as required for waste, recycle and ash containers.
• Safe access for routine and non-routine maintenance must be achieved. A paved walk along the exterior is optimal for safe access to the potentially large expanses of exterior glazing.

Security and Safety Requirements

• Because many existing campus pedestrian routes intersect at or near the building, it is likely that there will be multiple building entrances to accommodate access from different directions.
• Because of the proximity of the heavily populated University Avenue to the west, the west edges of campus are more prone to off-campus intruders. Some of the security issues that have been experienced in the past include high technology equipment theft, break-ins and sleeping in buildings and loading areas. The University police should also be consulted during the design phase about the particular needs of this site.
• Building and site design should follow the guidelines set forth in the University's Crime Prevention through Environmental Design document.
• Operable windows accessible from grade should be avoided or include safeguard mechanisms to prevent entry.
• Emergency phones should be strategically placed on site along major pedestrian routes.
• Design of site lighting levels should take into consideration specific characteristics of the site.
• Parking and loading areas should have the ability to be secured when not in use by a rolling overhead door or other means.
• Air intake should conform to NIOSH 2002-139 “Guidelines for Protecting Building Environments from Airborne Chemical, Biological or Radiological Attacks.”

Campus Relationships

• The MEIAB mission as an interdisciplinary building creates relationships to the south campus research facilities, the adjoining science buildings and the engineering facilities to the east.
• The location of the MEIAB offers strong relationships, both physical and visual between Architecture, Gerberding Hall, and Meany Hall.
• The project site sits at the axis of two significant access corridors on campus; the east west corridor connecting Grant Lane with NE 40th Street and the north south corridor connecting Red Square with Okanogan Lane.

Opportunities and Constraints

With careful planning, the new Molecular Engineering should offer a tremendous opportunity to enhance its surrounding and engage the unique character of the central core campus. The project should preserve and enhance the memorable open spaces and planting of the core campus with careful building sitting and landscape development. The project should effectively support campus pedestrian flow and desire lines including Grant Lane and provide well placed building entries, landscape cues and appropriately scaled landscape pathways. The project offers opportunities to
improve existing shortfalls and conflicts such as the pedestrian crossing at Okanogan Lane and the loading area for Johnson Hall. The new activities and structures to support the project, including access to service areas, lighting, signage, bicycle storage, etc. must not detract from the quality of the existing environment. And with attention to massing, materials and scale, the project must conserve and maintain and complement the existing context including the character of the newer Johnson Hall Courtyard.