1. INTRODUCTION

Background

The University of Washington is proposing to modify guardrails on the exterior of the University of Washington Club (UW Club), which was completed in 1960 as the Faculty Club. The building is located in a northeast area of the campus associated with its early development and the Alaska-Yukon-Pacific Exposition of 1909. Built in 1958-60, the building is acknowledged by the University and many others as significant for its historical association with the institution's mid-20th century development and many other aspects of the University's history. The building is an example of Pacific Northwest Modernist architecture by its original designers, architects Paul Hayden Kirk and Victor Steinbrueck.

Much of the historical context of the building itself was derived from the National Register of Historic Places (NRHP) nomination (Merlino, 2009). Other research was undertaken to provide historical context and functional data about the UW Club.

The University of Washington is proposing to modify guardrails on the exterior of the building. The guardrail upgrade is the subject of this report, which includes a preliminary evaluation of the historical significance of the building and its exterior railings. The report contains recommendations for the project and a bibliography and list of source documents at the end of the text. Historic and contemporary photographs of the building follow, along with a selection of original 1952 construction drawings, and current photos of guardrail, handrail, and retaining wall conditions.

Research Sources

Much of the historical context of the building itself was derived from the NRHP nomination (Merlino, 2009). Other research was undertaken to provide historical context and functional data about the UW Club. Research sources included drawings, maps, and studies sectioned by original 1952 construction drawings, and current photos of guardrail, handrail, and retaining wall conditions. The HRA study was undertaken by BOLA Principal Susan Boyle, AIA, and Preservation Planner Sonja Molchany, with assistance from Professor Merlino and BOLA intern Abby Inpanbutr. The HRA research was undertaken in January 2013 and the report prepared in February 2013. The HRA was reviewed with University personnel in mid-February 2013 and then finalised.
and modifications to the physical environment are analyzed and documented. The landscape context is preserved, enhanced, and valued. [ii] Further involves conservation and interpretation of the campus's historic character and public value. The structure and condition of important elements of the campus, including historic character and public value, is provided a context to appreciate and enhance their value. (iii) According to the Master Plan, the interior of the facility is provided a context to enhance the historic properties as part of its project planning. Preservation efforts begin with inventory of the site and analysis of conditions, followed by the preparation of a detail project plan and implementation. Master Plan, the Regions provide stewardship and planning for its historic properties as part of its project planning.
Based on historic campus planning documents, the 2003 Seattle Campus Master Plan identified potential development areas on the campus, along with specific significant buildings, which are associated with the early development of the campus and early campus master plans. The early campus master plans included the 1898 Oval Plan, the 1909 Alaska-Yukon-Pacific Exposition Plan, and the 1915 Regents Plan. The UW Club has been well-recognized for its architectural significance for over 50 years. The Master Plan recognized the building's significant building, noting that future development should "respect and conserve the architecture of the Faculty Center" (Figure TV-67, p. 105). The UW Club's current website also notes that it is located on campus in an architectural landmark...

HISTORICAL CONTEXT

Development of the University of Washington's Campus

The University of Washington was established by the State Legislature in 1861 as the first public university in the state. Initially it was sited on a ten-acre parcel in what is present downtown Seattle. By the late 1880s, the original facilities were inadequate due to increasing student enrollment and urban development. The University Land and Building Commissioners hired local architect William E. Boeing to develop a comprehensive plan to guide future building locations. The Regents sought to develop a campus plan that would include a new student center and administration building at the new site, as well as the nearby Observatory, which were completed the same year.

- **Denny Hall** was completed in 1892. Denny Hall was the University's first classroom and administration building. It moved to its current location in 1949.
- **Regents Hall** was completed in 1897.
- **Lewis and Clark Halls** and **Observatory** were completed in 1890.
- **Denny Hall** and **Observatory** were completed in 1890.

The Oval Plan, known also as the Fuller Plan, ca. 1898. (University of Washington, from Johnston, p. 20)

...
In 1903 the Board of Regents hired renowned landscape architects, the Olmsted Brothers, to prepare a design for a general campus plan. While the resulting 1904 Olmsted plan was never realized, it was adapted in part as the plan for the AYPE. In planning for this exposition local businessmen approached the University Regents in 1906 to suggest that the undeveloped southern portion of the campus be used for the fair grounds. The plan was then developed by the Olmsted Brothers, who also provided the landscape design. As a result, the campus was cleared of timber. Thus a good portion of the present campus plan descends from John Charles Olmsted’s Beaux-Arts design for the 1909 fair grounds.

The AYPE grounds reverted to the University in 1909, leaving behind (as its legacy) central axis of Rainier Vista, an encircling road system, (and an emphasis on the landscape and formal layout of buildings. The AYPE also left the University with a number of so-called permanent buildings. After the AYPE, most of the University’s permanent buildings were built in the Central campus area. The Faculty Club is located on the site of an earlier building, the Hoo Hoo House. This building was designed by noted Seattle architect Ellsworth Storey for use by the Hoo Hoo, a lumbermen’s fraternal association, during the AYPE. The Hoo Hoo’s purpose was entertainment, and the Ellsworth Story House was designed to provide entertainment. The Hoo Hoo House served as the center of social activities and housed the Faculty Club. The Faculty Club is located on the ground floor of the building. The ground floor of the building was used for social events and meetings. The building was designed in a Prairie style, which was popular during the AYPE period.
Immediatly following World War II, major changes were made in response to the influx of students.

February 22, 2013, page 5

Historic Resource Addendum, Final Report
In the 1950s, a University Architectural Commission was established and a University Architect appointed. Collegiate Gothic was replaced by Modern style architecture as the preferred style for new campus buildings. Buildings on the campus constructed in the decades after World War II were designed to emphasize new materials and expressive structural qualities. Prominent among the new buildings were the Student Union (HUB) (1949, recently significantly altered and expanded) and the University Faculty Center/Faculty Club (1958-60), which are located in close proximity on either side of Stevens Way.

Design for university buildings became more diverse in the 1970s with newer Brutalist and Modernist style structures, and the ongoing additions and rehabilitation and adaptive use of older buildings.

Despite recent changes, the plan of the original University of Washington campus has remained essentially intact. Processes of 11 have been used in campus master plans, building supplemental

The Designers of the Original Faculty Club

The UW Club was designed as a unique collaboration between two of the most celebrated architects in the Pacific Northwest during the middle of the 20th century, Paul Hayden Kirk and Victor Steinbrueck. Steinbrueck was in practice alone and teaching in the Department of Architecture at the University of Washington at the time of the building's design and construction. In 1957, Kirk had just formed a new firm, Paul Hayden Kirk & Associates, and both these company names appear on drawings for the Faculty Center Building of 1958-59. Records suggest that both of the new firm's design partners, Paul Kirk and Victor Steinbrueck, may have worked on the project, but it is clear from letters of correspondence, drawings, and records that the lead designers of the building were, in equal ways, Paul Kirk and architect Victor Steinbrueck.

The landscape architect was the notable firm of Ekbo, Dean and Williams.

Paul Hayden Kirk (1914—1995)

Paul Kirk was one of Seattle's best known mid-century architects. Born in Salt Lake City, he came to Seattle with his family in 1922, and received a Bachelor of Architecture degree from the University of Washington in 1937. He established his own firm in 1939, and served as principal of Paul Hayden Kirk & Associates (1940-60). Records suggest that both of the new firm's design partners, Paul Kirk and Victor Steinbrueck, may have worked on the project.

Kirk's firm transitioned to the name Kirk, Wallace, McKinley & Associates in 1960. Records indicate that both of the new firm's design partners, Paul Kirk and Victor Steinbrueck, may have worked on the project. It is clear, however, from letters of correspondence, drawings, and records that the lead designers of the building were, in equal ways, Paul Kirk and architect Victor Steinbrueck.
reputation for his residential work, helping create the Northwest Regional style of Modernism, using wood as a primary material for framing, trim, and ornamentation, and plans that linked indoor and outdoor spaces. His residential designs in the 1950s are cited as displaying "characteristics of the International style with flat roofs, bands of windows, and simple cubic shapes" with "an increasing tendency towards complex structural detailing, often with exposed layers of wood framing" (DoacomomoWeWa website). These characteristics were embodied clearly in his designs for the Group Heath Cooperative Northgate Clinic (1956, demolished), and remain evident in the Blakeley Clinic (1956-57), and the University Unitarian Church (1959). Architectural historians Grant Hildebrand and T. William Booth cite Kirk's use of wood as a medium of expression, his practice was well known and appreciated.

Although he had a small body of work as a result of his varied interests, his practice was well known and appreciated.

Kirk's buildings from the 1950s and 1960s often featured bypassing framing details with visible intersections and connections, and shoji screen-like elements that reinterpreted traditional Japanese architecture. By the mid-1960s Kirk had completed many of his most noteworthy projects, including the steel-framed UW Faculty Club. This project marks a critical transformation of his wood framing concepts to a steel structure.

Kirk's designs gained local and national recognition through awards and publications, and he and his various firms received specific mention in over 60 articles in national architectural journals between 1945 and 1970. Kirk received the National AIA Merit Award in 1965, and the first AIA Seattle Medal in 1984. He retired from practice in 1978, and died in 1995 at the age of 81 (Rash, p. 252-255).

Victor Steinbrueck (1911-1985)

Victor Eugene Steinbrueck was born in Mandan, North Dakota, and moved to Seattle with his family as a young boy. He graduated from Seattle's Franklin High School and then entered the University of Washington in 1928. He began studies in the University's School of Fisheries, but changed his academic course to architecture in 1930 and graduated in 1935 with a Bachelor of Architecture. In the 1930s, Steinbrueck worked as an architect for the Works Progress Administration and the Civilian Conservation Corps, generating a series of watercolors illustrating the CCC camps. Between 1935 and 1939, he worked as an architect for a number of Seattle architects, including William Bain, Sr., J. Gordon Kaufmann, James Taylor, and Bjarne Moe. Steinbrueck had a solo practice from 1939 until 1942, and then joined the architect firm of William T. Wilson to work as a partner in the firm Wilson, T. Wilson & Partners. He returned to Seattle in 1946 and established the Steinbrueck & Associates architectural firm.

Steinbrueck was a professor of architecture in the UW's Department of Architecture for 30 years, from 1946 until 1976. In 1962-64 he served as the Department's Chairman. In 1957, Steinbrueck relocated briefly to Michigan to work with his former classmate, architect Minoru Yamasaki. Steinbrueck's designs for the Alden Mason House in Richmond Beach (1951, destroyed) and his own house at 1401 East Spring Street (1949-53) both received Seattle AIA Honor awards, and exemplify the simple modernism that he showed in his early work. Other residential projects included an earlier house for Alden Mason (1949), and houses for William T. Stellwagen (1951-55) and Earl L. Barrett (1956). He completed other residential commissions and the Faculty Club building with Kirk during this period.

More central to Steinbrueck's work was his ability to engage the interest of the average citizen in the natural and built environment of the city. His Guide to Seattle Architecture (1953) was central to the city's architectural history, and was reprinted several times. His later book, Seattle's Architecture (1978), was also widely read and influential. Steinbrueck's writing was characterized by his love for the city and his belief in the importance of preserving its architectural heritage.

Although he had a small body of work as a result of his varied interests, his practice was well known and appreciated.

Kirk's designs gained local and national recognition through awards and publications, and he and his various firms received specific mention in over 60 articles in national architectural journals between 1945 and 1970. Kirk received the National AIA Merit Award in 1965, and the first AIA Seattle Medal in 1984. He retired from practice in 1978, and died in 1995 at the age of 81 (Rash, p. 252-255).

Victor Eugene Steinbrueck was born in Mandan, North Dakota, and moved to Seattle with his family as a young boy. He graduated from Seattle's Franklin High School and then entered the University of Washington in 1928. He began studies in the University's School of Fisheries, but changed his academic course to architecture in 1930 and graduated in 1935 with a Bachelor of Architecture. In the 1930s, Steinbrueck worked as an architect for the Works Progress Administration and the Civilian Conservation Corps, generating a series of watercolors illustrating the CCC camps. Between 1935 and 1939, he worked as an architect for a number of Seattle architects, including William Bain, Sr., J. Gordon Kaufmann, James Taylor, and Bjarne Moe. Steinbrueck had a solo practice from 1939 until 1942, and then joined the architect firm of William T. Wilson to work as a partner in the firm Wilson, T. Wilson & Partners. He returned to Seattle in 1946 and established the Steinbrueck & Associates architectural firm.

Steinbrueck was a professor of architecture in the UW's Department of Architecture for 30 years, from 1946 until 1976. In 1962-64 he served as the Department's Chairman. In 1957, Steinbrueck relocated briefly to Michigan to work with his former classmate, architect Minoru Yamasaki. Steinbrueck's designs for the Alden Mason House in Richmond Beach (1951, destroyed) and his own house at 1401 East Spring Street (1949-53) both received Seattle AIA Honor awards, and exemplify the simple modernism that he showed in his early work. Other residential projects included an earlier house for Alden Mason (1949), and houses for William T. Stellwagen (1951-55) and Earl L. Barrett (1956). He completed other residential commissions and the Faculty Club building with Kirk during this period.

More central to Steinbrueck's work was his ability to engage the interest of the average citizen in the natural and built environment of the city. His Guide to Seattle Architecture (1953) was central to the city's architectural history, and was reprinted several times. His later book, Seattle's Architecture (1978), was also widely read and influential. Steinbrueck's writing was characterized by his love for the city and his belief in the importance of preserving its architectural heritage.

Although he had a small body of work as a result of his varied interests, his practice was well known and appreciated.
Victor Steinbrueck was made a Fellow of the American Institute of Architects in 1960, and in 1985 received the AlA Seattle Medal — the highest honor of the Seattle AlA. He also received the Architect of the Year Award in 1960 from the Washington State Chapter of the American Institute of Architects, and his Market Sketchbook won the Governor's Book Award in 1969. In special recognition for his efforts, Steinbrueck was named First Citizen of Seattle in 1977. Later, the mayor of Seattle named November 2, 1982 as Victor Steinbrueck Day.

Garrett Eckbo (1910—2000)

American landscape architect and a founding partner of EDIAX (Ecko, Dean, Austin and Williams), Garrett Eckbo was born in Cooperstown, New York, in 1910. After studying at the University of California, Berkeley, he received his Bachelor of Science degree in Landscape Architecture. He was influenced by modernist architect Walter Gropius, who was then head of the architecture department at Harvard University.

Eckbo was influenced by modernist architect Walter Gropius, who was then head of the architecture department at Harvard University. Before winning a scholarship to the Harvard Graduate School of Design, he spent a year working at a nursery of landscape architecture and a year teaching at a nursery of landscape architecture with a degree in landscape architecture. After receiving his Bachelor of Science degree in Landscape Architecture, he went on to work for a number of landscape architects, including Walter Gropius and Fletcher Steele.

Eckbo received his Master of Landscape Architecture from Harvard in 1938 and returned to California to work for his own firm, Eckbo and Williams. He later partnered with Richard Haag to form the firm Eckbo and Haag, which became Eckbo, Dean, Austin, and Williams.

In 1940, Eckbo and his brother-in-law, Edward Williams, established a new firm, Eckbo and Williams, in Seattle. The firm worked on a number of projects, including the design of the University of Washington campus and the Seattle City Hall.

Eckbo was influential in the development of modern landscape architecture, and his work was featured in a number of publications, including the Journal of the American Institute of Architects and the Landscape Architecture Journal.

In 1982, Eckbo was named a Fellow of the American Institute of Architects, and in 1985 he received the AlA Seattle Medal — the highest honor of the Seattle AlA. He also received the Architect of the Year Award in 1960 from the Washington State Chapter of the American Institute of Architects, and his Market Sketchbook won the Governor's Book Award in 1969. In special recognition for his efforts, Steinbrueck was named First Citizen of Seattle in 1977. Later, the mayor of Seattle named November 2, 1982 as Victor Steinbrueck Day.
Eckbo left EDAW in 1979, forming Garrett Eckbo and Associates that year, and later Eckbo Kay Associates, with Kenneth Kay, in 1983. During his long career, Garrett Eckbo designed hundreds of residential gardens, following modernist landscape tenants. His first book, Landscape for Living (1950), showed a new approach to the modern garden based on his California work. Eckbo taught at the University of Southern California's School of Architecture from 1948 to 1956, and was a professor and Chair of the Department of Landscape Architecture at UC Berkeley from 1963 to 1969.

Garrett Eckbo was the landscape consultant from the firm of Eckbo, Dean and Williams for the Faculty Club building in 1959. While records show that both Steinbrueck and Kirk walked the landscape to mark mature trees to be saved, they relied on him to complete the design. Eckbo's original landscape design for the Faculty Club carried his signature features—respect for the natural landscape, use of native vegetation, and his addition and relationship to modern art in the landscape.

The Building's History and Use

The University of Washington Faculty Club Building is the second building on this site for the use of Faculty Club members. The first building, the Hoo Hoo House, was designed by noted Seattle architect Ellsworth Storey for the Hoo Hoo, a lumbermen's fraternal organization, for the AYPE. After the fair, the building was turned over to the University Men's Faculty Club, and later included the Women's Faculty Club and Wife's Faculty Club. (Storey was a good friend and mentor of Kirk and Steinbrueck.)

During the planning for a new club in the late 1950s, it was debated whether the Hoo Hoo House should be remodeled or replaced. The AYPE era building had been turned over to the University Men's Faculty Club, and it later housed both the Women's and Wife's Faculty Clubs. However, in 1959, the Hoo Hoo House was destroyed to make way for the new facility. Seattle architect Ellsworth Storey, who had designed the building in 1909, had been a good friend and mentor of both Paul Kirk and Victor Steinbrueck. While going forward with the project, the two architects expressed regret in losing a historic building designed by their colleague.

During the late 1950s, when the members of the Faculty Club were working on space planning for the new building, the University was in the midst of new capital construction. In 1958, a memo from the University of Washington campus was the following:

Architecturally, the University of Washington campus is a amalgam of architecture; the indefinable Denny Hall, the classical survivors of the 1909 exposition, the 'collegiate gothic' of the 1930s, and the anonymously modern additions of the immediate postwar era. To this contemporary, the University of Washington campus is an amalgam of architecture; the

The memo sought approval from the University Board of Regents and the Architectural Commission of the University for a "modern facility" for the Faculty Club. This approval was granted, and the Club developed a comprehensive program outlining their needs for a new building. They also requested $200,000 dollars from the Board of Regents for the construction of the Faculty Club building. The Club providing $200,000 dollars, the Board of Regents recommended that the Club develop a comprehensive program outlining their needs for a new building. This proposal was then presented to the University for approval. The proposal was approved, and the Club began the process of selecting an architect to design the new building.

The University of Washington Faculty Club building is the second building on this site for the use of Faculty Club members. The first building, the Hoo Hoo House, was designed by noted Seattle architect Ellsworth Storey, who had designed the building in 1909, had been a good friend and mentor of both Paul Kirk and Victor Steinbrueck. While going forward with the project, the two architects expressed regret in losing a historic building designed by their colleague.

During the late 1950s, when the members of the Faculty Club were working on space planning for the new building, the University was in the midst of new capital construction. In 1958, a memo from the University of Washington campus was the following:

Architecturally, the University of Washington campus is a amalgam of architecture; the indefinable Denny Hall, the classical survivors of the 1909 exposition, the 'collegiate gothic' of the 1930s, and the anonymously modern additions of the immediate postwar era. To this contemporary, the University of Washington campus is an amalgam of architecture; the

The memo sought approval from the University Board of Regents and the Architectural Commission of the University for a "modern facility" for the Faculty Club. This approval was granted, and the Club developed a comprehensive program outlining their needs for a new building. They also requested $200,000 dollars from the Board of Regents for the construction of the Faculty Club. This proposal was then presented to the University for approval. The proposal was approved, and the Club began the process of selecting an architect to design the new building.

The University of Washington Faculty Club building is the second building on this site for the use of Faculty Club members. The first building, the Hoo Hoo House, was designed by noted Seattle architect Ellsworth Storey, who had designed the building in 1909, had been a good friend and mentor of both Paul Kirk and Victor Steinbrueck. While going forward with the project, the two architects expressed regret in losing a historic building designed by their colleague.
Women's Club). With that in mind, the Architectural Commission reviewed possible designers, ultimately selecting two local architects, Victor Steinbrueck and Paul Hayden Kirk. Architect David McKinley, who eventually helped on the construction drawings of the building, reported it was probably Victor Steinbrueck who got the commission for the team. At the time, Steinbrueck was a faculty member who knew both the University President and other architect members of the Architectural Commission, all of whom were familiar with his design work and teaching.

Paul Hayden Kirk was a well-established practitioner with his own firm at the time, and he was likely well known to the Architectural Commission members as well. The Commission awarded the project to the two architects in 1958, and selected the landscape architecture firm of Eckbo, Dean and Williams to do the landscape plan for the site. (Following a thorough design review by both the Architectural Commission and the Faculty Club members, the final working documents were approved on January 16, 1959, and the construction was completed by April of 1960. The grand opening of the building was held on May 8, 1960, to much excitement on the part of Club members and the University community. An article in the Daily quoted Steinbrueck as saying, "It's a satisfaction to see a building come into use and fulfill most of your desires," and mentioned that although the landscaping was not complete and some furniture was still arriving, the building was ready for operation.

The building's original purpose—to serve as a place of refuge, repose and friendly camaraderie for faculty—was continued at the present day. The building's location, on the eastern portion of the University of Washington's Seattle campus, is a Northshore Modern aesthetic that emphasized the work of these two architects. The site's wooded, mostly on the western and southern sides, with mature hemlock, fir and other trees from which the slope drops to the street level of the building's lower level, which is set back approximately 45' from the road.

Campus Setting and Site Features

4. ARCHITECTURAL DESCRIPTION

The UW Club is located on the east side of East Stevens Way, on the primary campus loop road. The site, which is on a steep lot that slopes from the sidewalk edge to the lower level of the building, which is set back approximately 45' from the road, is Woodward, mostly on the western and southern sides, with mature hemlock, fir and other trees.

The building was ready for occupation in 1958, and the landscape was developed in conjunction with the building. The architect's explanation of the site included the incorporation of the existing woods into the design, as well as the use of local materials, such as native species, primarily on the north, south and west sides. The design of the building took full advantage of the sloping topography to exploit views, parking and accessibility. From the entrance bridge to the west, and primarily the meadow and native herbaceous under the hills, the view covered the west and south sides, under the adjacent campus. Low ground cover and some flowering bushes covered the west and south sides, under the entrance bridge. The site was designed to be a place of gathering and repose, with mid-size shrubs and native flowering plants. The landscape design was to have a "homey feel" that was integral to the site's design.

The site is wooded, mostly on the western and southern sides, with mature hemlock, fir and other trees.

Following a thorough design review by both the Architectural Commission and the Faculty Club, the building was completed in 1958 and selected the landscape architecture firm of Eckbo, Dean and Williams to do the landscape plan for the site. (Following a thorough design review by both the Architectural Commission and the Faculty Club, the final working documents were approved on January 16, 1959, and the construction was completed by April of 1960. The grand opening of the building was held on May 8, 1960, to much excitement on the part of Club members and the University community. An article in the Daily quoted Steinbrueck as saying, "It's a satisfaction to see a building come into use and fulfill most of your desires," and mentioned that although the landscaping was not complete and some furniture was still arriving, the building was ready for operation.

The building's original purpose—to serve as a place of refuge, repose and friendly camaraderie for faculty—was continued at the present day. The building's location, on the eastern portion of the University of Washington's Seattle campus, is a Northshore Modern aesthetic that emphasized the work of these two architects. The site's wooded, mostly on the western and southern sides, with mature hemlock, fir and other trees from which the slope drops to the street level of the building's lower level, which is set back approximately 45' from the road.

Campus Setting and Site Features

4. ARCHITECTURAL DESCRIPTION

The UW Club is located on the east side of East Stevens Way, on the primary campus loop road. The site, which is on a steep lot that slopes from the sidewalk edge to the lower level of the building, which is set back approximately 45' from the road, is Woodward, mostly on the western and southern sides, with mature hemlock, fir and other trees.
A review of existing conditions in comparison with the original landscape plan (Sheet A.23 by Eckbo, Dean, & Williams, Landscape Architects, from the construction drawing set by Paul Hayden Kirk & Associates, Architects, and Victor Steinbrueck, AIA, UW No. 196-A-24) indicates changes that have been made.

On the steeply sloping site, the original designers took advantage of the extensive views to the east and south, across Lake Washington, the Cascade Mountains, and Mount Rainier. The building's specific siting was chosen to minimize impacts on the site and removal of trees, allowing them to be used in the landscaping design. The siting also facilitates the placement of vehicular parking out of view under the building.

On the northwest corner of the property, a single-lane vehicular access road runs from Stevens Way, runs the length of the east side of the site, providing space for 25 cars, with an exit roadway at the south. The rectangular parking lot runs the length of the east side of the site, with an entrance on the north side of the building, providing space for 25 cars. The exit road is situated just north of this access road, along with an access ramp leading to a service entry on the west side. The entrance to the parking lot is located below the east portion of the upper first floor of the building.

A review of existing conditions in comparison with the original landscape plan (Sheet A.23 by Eckbo, Dean, & Williams, Landscape Architects, from the construction drawing set by Paul Hayden Kirk & Associates, Architects, and Victor Steinbrueck, AIA, UW No. 196-A-24) indicates changes that have been made.

Above a current aerial view of the UW Club, circled in red, and its surroundings. (Google Maps, January 2013)
The current condition of landscaping along the south and southeast corner of the site retaining wall was the focus of this current review. The original drawing shows planting in close proximity to the building within the plant beds, the courts (decks) and on the site around the building's front (west) and south sides. The original plan calls out five cotoneaster bushes (three 3.5' "Cotoneaster Rhytidophyllus Orange Bead, and two 5' "Cotoneaster Verruculousus Scarlet Bead") to be planted in a row in the plant bed on the upper inside of this wall. In addition, different species of cotoneasters were planted throughout the site as indicated by this list and the legend on this sheet. (The plant list on the landscape plan noted that plant materials were to be sourced from the Arboretum, which the UW helped operate at the time.)

Historic photographs do not clearly show views that verify which species of plants were originally installed. However, it is clear that the current Yews — a bushy, upright evergreen shrub of up to 5' in height — are in the same place as the Cotoneasters. Given use of the site and age of the current plants, they may have been installed at a later date to replace the original, low-scale cotoneasters. Ca. 1960 photographs of the building's primary facades show the large, mature conifer trees that surrounded it. Images taken from below, looking northwest up at the building from the hillside on the east side, show Yews, Viburnum, and Large Foliage Trees, all behind window walls and crossed wall framing. Exterior views of clean Construction of brick, stucco, glass and steel, the building's facade utilizes AlaMedian's language of clean modernist design.

The current landscaping includes several specimen plants in pots set on the entry ramp and walkway. Those at the far west end of the raised walkway, which are highly visible from the main entry, are in symmetrically placed, classical-style containers that are inconsistent with the building's mid-century Modern design.

Landscaping was limited on the second floor courtyards. Originally a wood bench was provided with partially shaded small garden-like courtyards at the northeast and southwest corners of the building. However, it is clear that the current Yews — a bushy, upright evergreen shrub of up to 5' in height — are only in the exterior views of clean Construction of brick, stucco, glass and steel, the building's facade utilizes AlaMedian's language of clean modernist design.

The Building

The Building's facade utilizes AlaMedian's language of clean construction, featuring clean lines, white volumetric cubic forms, full-height window walls and exposed steel framing. The building is grounded on the site with its western portion cantilevered, and its east façade supported by slender steel pilotis, giving the building an elegant floating quality. It is nearly a perfect square in plan. The building is symmetrical, with classical-style courtyards at the northeast and southwest corners, which were highly visible from the main entry.

The current landscaping includes several specimen plants in pots set on the entry ramp and walkway. Those at the far west end of the raised walkway, which are highly visible from the main entry, are in symmetrically placed, classical-style containers that are inconsistent with the building's mid-century Modern design.

The current landscaping includes several specimen plants in pots set on the entry ramp and walkway. Those at the far west end of the raised walkway, which are highly visible from the main entry, are in symmetrically placed, classical-style containers that are inconsistent with the building's mid-century Modern design.

Historic photographs do not clearly show views that verify which species of plants were originally installed. However, it is clear that the current Yews — a bushy, upright evergreen shrub of up to 5' in height — are only in the exterior views of clean Construction of brick, stucco, glass and steel, the building's facade utilizes AlaMedian's language of clean modernist design.
Views were provided from the site, entry ramps and open spaces within the building as well by provision of light-weight, minimal railings. In lieu of a guard rail, a bench was placed across the western, open side of the large main level (second floor) courtyard, which was accessible from north and south corridors. The open side of the smaller deck-like terrace, near the southwest corner, was treated with the same, simple handrail as used along the entry ramp and walkway.

The building is designed on a modular system, may up by 18'-wide structural steel bays, which are divided into further modulation of 8', 4' and 2' depending on the function, size and infill of the spaces they comprise. The steel frame is clad with panelized, lightweight stucco, glass, or brick masonry infill.

The lower level is primarily clad with brick masonry, with a steel-framed glazing system that makes up the entire system of window walls, windows and doors. The upper level is finished with white stucco and a steel-framed roof. The lower level is primarily clad with brick masonry, with a steel-framed glazing system that makes up the entire system of window walls, windows and doors.

The building is designed on a modular system, may up by 18'-wide structural steel bays, which are divided into further modulation of 8', 4' and 2' depending on the function, size and infill of the spaces they comprise. The steel frame is clad with panelized, lightweight stucco, glass, or brick masonry infill.

The building is designed on a modular system, may up by 18'-wide structural steel bays, which are divided into further modulation of 8', 4' and 2' depending on the function, size and infill of the spaces they comprise. The steel frame is clad with panelized, lightweight stucco, glass, or brick masonry infill.
Commemorative plaques were placed in the different woods, noting both the Latin and common names of the tree species.

The entry passageway ceiling in the entry way and those in the south sitting room have suspended (acoustic tile hung with lights spaced every few modules. The entry passage features exposed aggregate floors that extend from the inside to the exterior courtyard in the center. The remainder of the upper floor has carpet. In the south dining room, the large fireplace has an original sculpture by the local artist Everett du Pen. DuPen was a sculptor and professor of art at the University for over eight decades, and a contemporary of the architects. His works are scattered across the globe, but his best-known works are the "DuPen Fountain" at the Seattle Center, which was installed in 1962 for the World's Fair, and "Vision," which debuted at the Edmonton Library in 1989 (Mulady, 2005).

The dining room has been recently re-carpeted. The ceiling in the dining room is approximately five feet taller than the rest of the upper floor, which gives it a larger sense of volume than the other spaces leading up to it. Operable clerestory windows give ample light into the large dining space, and allow a larger interior sense of the space. Glass runs at a sill height of approximately 21" from the floor and runs to the point of where the upper floor ends, recessed into the clerestory windows. The ceiling, in order to keep the acoustics under control, is finished with a grid of fir planks, running vertically with lights in between the grid spaces. Wood was used extensively as a way to warm up the glass, steel, and concrete environment, as well as to improve sound reflections and acoustics.

The lower level is accessed by a steel-framed staircase with exposed aggregate tread steps. It has been recently remodeled to accommodate for larger crowds indoors. The lower level bar, to the left of the stairs, has wood-paneled walls on the interior of the building and glass window walls for the exterior walls. The wood paneling was salvaged from the original Hoo Hoo House blackened softwood, retrofitted to fit the space. The bar is carpeted and has a dark wood ceiling. The lower level billiards room, three steps lower to the north from the lower level, is now used as a conference room. The space is finished with carpet, in contrast to the upper floor, which has exposed aggregate. The ceiling in the lower level is now wood panels, and the roof has been lowered to the second floor level. The lower level bar is now a conference room, and is finished with carpet, acoustic ceiling panels, and exposed aggregate.

Changes to the Building and Current Conditions

The Faculty Center has been well maintained, although some major modifications have been made since its original design. In 1967, the south dining room was enclosed with glass to accommodate for larger crowds indoors. This project, designed by architect Paul Kirk, incorporated detailing and finishes that matched the original design.

In 1985, University Architect Lee Copeland designed an approximately 19' by 10' extension of the north entry passageway, which was extended with glass to accommodate for larger crowds indoors. This extension matches the rest of the building, but is on a smaller scale, while the cladding—a dark gray-colored corrugated aluminum siding—distinguishes it from the original structure.

On the interior there are other minor modifications, such as the addition of room dividers, curtains, and the addition of office spaces. Modernization and expansion of kitchen facilities within the original space have been changed to the remainder of the building. On the exterior there have been modifications to service stairs and ramps on the east side of the building and other changes to railings on the service stairway. On the exterior there have been modifications to service stairs and ramps on the west side of the building and other changes to railings on the service stairway.
Comments on the Guardrails and Handrails

The original building design played off the sense of solid volumes and mass with the building mass and the east edge clearly defined by the entrance. The central courtyard was treated as a light well, and the outdoor spaces and views were defined by the entrance and central courtyard. The relationships of indoor and outdoor spaces, and conditioned interior rooms with the central courtyard were vital to the original building design. The drawings in the University of Washington Club Historic Resources Addendum document these changes.

The Building's Significance

The building is revered by University of Washington faculty, students, and staff alike, and by alumni and professionals in the local design community. As one of the finest examples of the International Style of architectural expression in the Pacific Northwest, the building was published in the premier architectural and design publications of the time. Upon completion, the building was published in Progressive Architecture, in 1961, as well as in the Steel Construction Directory.

The building is also significant as a notable joint work of Steinbrueck and Kirk. The building is referenced by University of Washington faculty, students, and staff alike, and by alumni and professionals in the local design community. The building was published in Progressive Architecture, in 1961, as well as in the Steel Construction Directory.

The concept of "Universal Design" is not only a character-defining feature of the original Faculty Club, but of other buildings by Paul Hayden Kirk, such as the Magnolia Public Library (1963) at 2801 34th Avenue West, and the Kirk Wallace McKinley Office (1972) at 2000 Minor Avenue East and the neighboring Lake Union Community Psychiatric Clinic I (Bush, Roed, and Hitchins Office) at 2009 Minor Avenue East.

The design of the handrail system is not only a character-defining feature of the original Faculty Club, but of other buildings by Paul Hayden Kirk, such as the Magnolia Public Library (1963) at 2801 34th Avenue West, and the Kirk Wallace McKinley Office (1972) at 2000 Minor Avenue East and the neighboring Lake Union Community Psychiatric Clinic I (Bush, Roed, and Hitchins Office) at 2009 Minor Avenue East.

5. EVALUATION & RECOMMENDATIONS

The Building's Significance

The building is revered by University of Washington faculty, students, and staff alike, and by alumni and professionals in the local design community. As one of the finest examples of the International Style of architectural expression in the Pacific Northwest, the building was published in the premier architectural and design publications of the time. Upon completion, the building was published in Progressive Architecture, in 1961, as well as in the Steel Construction Directory.

The building is also significant as a notable joint work of Steinbrueck and Kirk. The building is referenced by University of Washington faculty, students, and staff alike, and by alumni and professionals in the local design community. The building was published in Progressive Architecture, in 1961, as well as in the Steel Construction Directory.

The concept of "Universal Design" is not only a character-defining feature of the original Faculty Club, but of other buildings by Paul Hayden Kirk, such as the Magnolia Public Library (1963) at 2801 34th Avenue West, and the Kirk Wallace McKinley Office (1972) at 2000 Minor Avenue East and the neighboring Lake Union Community Psychiatric Clinic I (Bush, Roed, and Hitchins Office) at 2009 Minor Avenue East.

The design of the handrail system is not only a character-defining feature of the original Faculty Club, but of other buildings by Paul Hayden Kirk, such as the Magnolia Public Library (1963) at 2801 34th Avenue West, and the Kirk Wallace McKinley Office (1972) at 2000 Minor Avenue East and the neighboring Lake Union Community Psychiatric Clinic I (Bush, Roed, and Hitchins Office) at 2009 Minor Avenue East.
The Proposed Project and Existing Rail Conditions

The University recently undertook a campus-wide assessment of walkways and ramps, and found that

University of Washington Club

Department of Archaeology and Historic Preservation evaluated the University of Washington Club

Historic Resources Addendum, Final Report

February 22, 2013, Page 16

BOLA Architecture + Planning
These two floor plans cite the rail and retaining wall conditions by number. The plans are labeled as in the original.

UW Faculty Club
First Floor Railing Location Plan

UW Faculty Club
Second Floor Railing Location Plan
It appears that in some locations, such as No. 4, there is very minor use by the office staff in the nearby part of the building, and little if any public access to this area of the site. Thus upgrading may not be necessary. In other conditions, such as No. 3, 6 and 8, there are inharmonious later additions to the building and site, which have resulted in a mix of different types of guardrails.

General Recommendations

The proposed project is a voluntary effort by the University, intended to make existing conditions safer. (It is not an upgrade mandated by the City of Seattle’s Department of Building and Construction (DPC). Should a permit review be required, the project review should be undertaken in light of Section 3409, (Historic Buildings,) of the Seattle Building Code (SBC). This section of the code states, “3409.1 Historic buildings — landmarks. The provisions of this code relating to the construction, repair, alteration, addition, restoration and movement of structures, and changes of occupancy shall not be mandatory for landmarks where such buildings are judged by the building officials to provide a reasonable degree of safety to the public and the occupants of these buildings.”

Recommendations that follow are limited to a few specific conditions, both primary and secondary. They call for further study of the original design, and of railing needs of this significant building rather than a formulaic application of current code-driven solutions. General recommendations also call for consideration of the work in reference to the Secretary of the Interior’s Standards for the Treatment of Historic Properties and Guidelines for Rehabilitation.

Lastly the general recommendations suggest further reviews of potential operational solutions to address safety concerns, such as limiting access to exterior ramps, walkways and landscape spaces by unaccompanied children, and different protocols or maintenance methods by groundskeepers, such as the use of mechanical lifts to access upper retaining wall areas.

Primary Recommendations

Careful consideration should be given to each of the different safety design types and conditions and solutions to specific issues, provided selectively and in response to specific condition.

Condition No. 1

The main entry ramp and raised walk are over 8’ wide. They are used largely by individuals and small groups. Add a handrail on one side, with its supporting frame detailed to match the steel section and material of the original rail, but with wood as the actual handrail. Wood was chosen in the original design as a tactile material, and its use on the exterior will recall this. Match the original steel rail sections as closely as possible. A handrail is recommended, as it appears to be a needed addition particularly given the age of many visitors to the Faculty Club. Access controls should be considered to mitigate existing conditions, such as limiting use of the ramp by unaccompanied children.

Rails are currently painted a blue-grey to match the steel of the building or a dark bronze color. Any new rail finishes should match the original materials and color. Original design documents on and on-site investigation (using a cutting blade vertically to remove the exterior paint and sanding of the steel) revealed the original color of the paint. New rails should be refinished as necessary to achieve the same color.

Recommendations

Condition No. 2

Although the current guardrails are of different materials and the building and site are harmonious, the original design included metal railings. Any new guardrails should match the original material and color. A handrail should be installed as needed, in alignment with the original handrail design. The main entry ramp and raised walk are over 8’ wide. They are used largely by individuals and small groups. Access controls should be considered to mitigate existing conditions, such as limiting use of the ramp by unaccompanied children.
Condition No. 2.

Remove, restore and reinstall the original wood bench, and add a horizontal wood back bench element to infill the opening. Add a horizontal steel member to the existing rail system behind and on the sides of the bench to support the back piece in a floating fashion.

Consider commissioning the new wood back piece as an artwork designed and manufactured by a University student or faculty member through an open competition or limited selection process. The Architecture Department has an active woodshop facility that could be used for this production.

Secondary Recommendations

Condition No. 5.

Add a handrail and modify the guardrail along the outer edge of the southwest cornered deck to upgrade the safety rail system as closely as possible.

Condition No. 6.

Remove the heavy steel guardrail which was installed when the level of the upper floor was raised. Replace with a guardrail system as closely as possible to replace the cornered steel guardrail system on both sides.

Condition No. 7.

Alternate the solid rail sections, and consider adding an additional horizontal rail element. Which the original solid rail sections are closely as possible.

Condition No. 8.

Consider operational adjustments to address the need for fall protection by having groundskeepers work from a lift set on the driveway below the concrete retaining wall. Alternately add a simple guardrail system, mounted on the top of the retaining wall.

Condition No. 9.

Alternate the solid rail sections, and consider adding an additional horizontal rail element. Which the original solid rail sections are closely as possible.

Condition No. 10.

Remove the heavy steel guardrail system installed when the level of the upper floor was raised. Replace with a guardrail system as closely as possible to replace the cornered steel guardrail system on both sides.

Condition No. 11.

Alternate the solid rail sections, and consider adding an additional horizontal rail element. Which the original solid rail sections are closely as possible.

Condition No. 12.

Consider operational adjustments to address the need for fall protection by having groundskeepers work from a lift set on the driveway below the concrete retaining wall. Alternately add a simple guardrail system, mounted on the top of the retaining wall.

Condition No. 13.

Alternate the solid rail sections, and consider adding an additional horizontal rail element. Which the original solid rail sections are closely as possible.

Condition No. 14.

Consider operational adjustments to address the need for fall protection by having groundskeepers work from a lift set on the driveway below the concrete retaining wall. Alternately add a simple guardrail system, mounted on the top of the retaining wall.
Condition No. 1

C

Remove the Neo Classical style planters at the far west end of the walkway, or replace them with a single larger plant in a more Modern style planter.

The far west end of the raised walkway provides a framed view, which is emphasized by the outline of the steel canopy structure around walkway. The current view looks out at the back of the new Husky Union Building and its service drive and trash/recycle area. Consider screening or mediating this view by placing an element at this end of the walkway, perhaps a figurative plant in a container or a piece of sculpture specifically selected for this position.

Consider views of the new element from the building, the walkway, and the sidewalk along the west side of the site.

Condition No. 4, 7, 9 and 10.

C

No changes to the building appear to be needed at these conditions.

Condition No. 1

C

1. BIBLIOGRAPHY & SOURCES

Consider production of a publication and periodic exhibits and/or public presentations to educate the public about the history of the Faculty Club with the current members and staff of the University of Washington Club and with other University staff who so carefully maintain and work on the building.

Share the history of the Faculty Club with the current members and staff of the University of Washington Club and with other University staff who so carefully maintain and work on the building.

Condition No. 4, 7, 9 and 10.

Consider the height and size of the proposed planters at the east end of the raised walkway to ensure they do not obstruct the view of the building.

Condition No. 1

C

1. HISTORIC RESOURCES ADDENDUM, Final Report

February 22, 2013, Final Report

University of Washington Club Historic Resources Addendum, Final Report

BOLA Architecture + Planning

February 22, 2013

Condition No. 1

C

Remove the Neo Classical style planters at the far west end of the walkway, or replace them with a single larger plan...
7. GRAPHICS

Note: All of the images that follow on pp. 22-27 are from the University of Washington Libraries.

First image: View of the primary west facade.

Left: The Hoo-Hoo House in 1909, the original Men's and Women's Faculty Club.

1960.
View looking southwest toward the rear (east) facade, 1960. Plant materials have matured since that date.
View looking east at the main entrance, 1960. Note the wood bench seat to the right.

Looking south from the building's northwest side toward the entry ramp and walkway, 1960.
Left: View looking southeast at the north facade, 1960. This view shows the hovering quality of the original building mass, and the minimal rail system on the raised walkway ramp. To the east of the walkway, a partially cantilevered walk-in refrigeration section was added in 1987. It was sided in corrugated metal to distinguish it from the original building.

Below left: Exterior view looking south, 1960. Landscaping is minimal.

Below right: Exterior view looking south, 1960. This view shows the lower level from the lower level and between the east and west building sections, and the outer edge of the original upper terraced courtyard and glazed corridor.
The entry to the courtyard terrace was south of the west end of the upper floor.

Below left: Interior view, looking west in the southern corridor on the upper floor, 1960.

The west perimeter wall featured a minimally-detailed handrail. The interior materials and colors emphasized the simplicity of the building’s structural frame.

Left: Interior of the main entrance, 1960.
View looking northeast in the dining room, 1960.

Dining space.

View looking out into the exterior courtyard, 1960. The grass area was replaced with more...
Other buildings by Paul Hayden Kirk and Kirk Wallace McKinley

Above, the University Unitarian Church, 1969. (University of Washington Libraries Special Collections)

Below, a 1939 historic tax photo of the 1878 Blakeley Clinic. (Puget Sound Regional Archives Image No. DM2599)

(University of Washington Libraries Special Collections)
Left: Bush Roed & Hitchings Office, 2200 Minor Avenue
East, Kirk Wallace McKinley (1972) (Photo by Susan Boyle, 2005).

Directly below, Seahurst Residence (Paul Kirk Architect
(1956), (Windermere Real Estate photograph, 2012)
Susan Boyle, 2004).

Bottom, Seattle Public Library's Magnolia Branch, Kirk
Wallace McKinley (1964). (Build LLC photograph, ca.
2012)
Other Building by Victor Steinbrueck Architect
Above, two views of the Victor Steinbrueck House, 1932. (University of Washington Libraries Special Collections, Negatives No. DM4234 and DM4235.)